
Trust Me If You Can
How Usable Is Trusted Types In Practice?

Sebastian Roth
sebastian.roth@tuwien.ac.at

TU Wien

Lea Gröber
lea.groeber@cispa.de

CISPA Helmholtz Center for Information Security

Philipp Baus
s8phbaus@stud.uni-saarland.de

Saarland University

Katharina Krombholz
krombholz@cispa.de

CISPA Helmholtz Center for Information Security

Ben Stock
stock@cispa.de

CISPA Helmholtz Center for Information Security

Abstract
Many online services deal with sensitive information such

as credit card data, making those applications a prime tar-
get for adversaries, e.g., through Cross-Site Scripting (XSS)
attacks. Moreover, Web applications nowadays deploy their
functionality via client-side code to lower the server’s load, re-
quire fewer page reloads, and allow Web applications to work
even if the connection is interrupted. Given this paradigm
shift of increasing complexity on the browser side, client-
side security issues such as client-side XSS are getting more
prominent these days. A solution already deployed in server-
side applications of major companies like Google is to use
type-safe data, where potentially attacker-controlled string
data can never be output with sanitization. The newly intro-
duced Trusted Types API offers an analogous solution for
client-side XSS. With Trusted Types, the browser enforces
that no input can be passed to an execution sink without being
sanitized first. Thus, a developer’s only remaining task – in
theory – is to create a proper sanitizer. This study aims to
uncover roadblocks that occur during the deployment of the
mechanism and strategies on how developers can circumvent
those problems by conducting a semi-structured interview,
including a coding task with 13 real-world Web developers.
Our work also identifies key weaknesses in the design and
documentation of Trusted Types, which we urge the standard-
ization body to incorporate before the Trusted Types becomes
a standard.

1 Introduction

The effect of Cross-Site Scripting (XSS) and its mitigation
techniques have been studied extensively in recent years. For
more than two decades XSS has been present in the OWASP
Top 10 Web Application Security Risks [44], showing that
XSS is here to stay. While the server-side part of the problem
already has proper mitigation techniques, such as type safety
[27] or automatic encoding [14], client-side XSS lacks proper
solutions. However, prior work [26, 39, 41, 55, 56, 57, 59]
has shown that client-side XSS vulnerabilities are on the rise.

A common mitigation strategy for XSS is the usage of
a Content Security Policy (CSP). However, prior work has
already shown that deployment of this lacks behind [9, 50,
66, 67] and developers even are unaware of the differences
between client- and server-side XSS when attempting to grasp
the threat models covered by CSP [51]. Nevertheless, to trans-
fer the concept of type safety to the client side, Google pro-
posed the Trusted Types API [33], a new addition to CSP.
With this mechanism, it is not possible to invoke dangerous
JavaScript APIs without passing the input through sanitiza-
tion functions that the developers need to specify themselves.
However, at the point where the World Wide Web Consortium
(W3C) has discussed shipping Trusted Types as a First Public
Working Draft (FPWD) [16], browser vendors raised concerns.
Specifically, they noted that the complexity of self-creating
sanitization functions for HTML, JavaScript, and script URLs,
may be too difficult for the majority of developers. However,
the claim of the browser vendors lacks a scientific founda-
tion because the actual usability of Trusted Types deployment
has not yet been evaluated. Still, in December 2023, Mozilla
changed their opinion on Trusted Types such that it now will
become a Technical Specification [4]. A timeline of the events
around TT is depicted in Table 4.

To close the research gap regarding TT’s deployment pro-
cess and provide valuable input in the ongoing standardization
process, the objective of our work is to get insights into each
step of the deployment process of Trusted Types and inves-
tigate the developer’s knowledge about the underlying issue,
namely client-side XSS. Therefore, we designed a qualitative
interview study in a ”bottom-up” approach [24] that includes
a coding task where the participants deploy Trusted Types for
a small Web application. Throughout our study, we evaluate
the participant’s knowledge of the different dimensions of
XSS and their knowledge of existing mitigation techniques.
In addition, our iterative study process allowed us to get fine-
grained insights into all deployment steps, allowing us to
evaluate the entire deployment process of Trusted Types.

Our work first presents a comprehensive qualitative inter-
view study methodology to evaluate the usability of Trusted

Types (Section 3). With 13 participants, we were able to un-
cover important roadblocks of Trusted Types deployment,
such as misconceptions introduced by information sources or
problems caused by same-origin iframes (Section 4). Based
on our findings, we discuss and propose strategies on how
to successfully deploy Trusted Types, while highlighting the
pitfalls developers might face. Also, we present general im-
provement suggestions for the Trusted Types standard, like
the inheritance of Trusted Types sanitizers for same-origin
iframes (Section 5). With the improvement suggestions, we
want to ease the deployment process of Trusted Types and
influence the W3C’s standardization process. Also, we hope
that the W3C and research community sees this work as a
role model to test working drafts with real-world Web devel-
opers before releasing them and fully implementing them in
browsers.

Availability. For transparency and reproducibility, we pro-
vide a full replication package [11], including our survey and
coding task (incl. custom third parties) Web apps.

2 Background & Related Work

This section describes details about the underlying threat
model of Trusted Types, the security mechanism itself, as
well as a brief overview of qualitative methodologies used in
usable security research.

2.1 Cross-Site Scripting
To protect the content of a Web page, the Same Origin Pol-
icy (SOP) ensures that only documents with the same origin
[3], i.e., same protocol, hostname, and port, can access each
other. Notably, if attackers manage to execute JavaScript in
the origin of a vulnerable Web site, this script has the same
capabilities as a script that is served legitimately by the page
itself. Thus, the attacker’s script can steal sessions or login
credentials, impersonate user actions, or change the page con-
tent to distribute fake news. Since its initial discovery back
in 1999 [48] numerous publications and blog posts inves-
tigated the different types of Cross-Site Scripting, such as
XSS through content sniffing [47], client-side (also called
DOM-based) XSS [29], universal XSS [23], self XSS [52],
scriptless XSS [20], mutation-based XSS [21], same-origin
method execution [19], gadget-based XSS [40], or persistent
client-side XSS [57]. In general, however, XSS can either
be persistently stored or only reflected per request, while the
vulnerable code is either located on the server or the client
side. The plethora of different types of XSS, as well as its
omnipresence in annually published OWASP Top 10 Web
Application Security Risks [44], shows that XSS is a problem
that is still not solved nowadays.

2.1.1 Server-Side Cross-Site Scripting

The first discovered type of XSS flaw was server-side
XSS [48], i.e., the vulnerable code is located on the server
side. In this case, parts of the request, such as the URL pa-
rameters (reflected), or stored user content, such as profile
descriptions (persistent), are mixed up with the developer-
specified markup in the response. This way, an attacker can
inject malicious markup such as script tags that are then deliv-
ered via the server of the vulnerable application, which causes
the script to run in the context of this Web application.

Notably, server-side XSS can be mitigated or even defended
against by enforcing type safety on the backend such that a
string (or XSS payload) can never end up in a response un-
filtered [27]. Also, many popular frameworks, such as the
Python Django Framework, automatically encode, and thus
sanitize, every string that is programmatically passed to the
template rendering engine [14]. Thus, a developer needs to ex-
plicitly use the mark_safe method to cause a server-side XSS
vulnerability. Also, academic solutions such as Noxes [28]
can be used to prevent XSS. Noxes uses a set of rules to detect
XSS attempts. For example, it requires user interaction for all
dynamically crafted links to enable the user to make either
temporary or permanent security decisions.

2.1.2 Client-Side Cross-Site Scripting

With the advent of more complex client-side JavaScript
code, XSS vulnerabilities can also occur in vulnerable client-
side code. Also here, an injection can happen either in a
reflected fashion (e.g., by using data from the URL via
location.href) or payloads can originate from a persis-
tent client-side storage such as cookies or the localStorage
API. Either way, the vulnerability is that the attacker code
from these locations at some point ends up in a JavaScript
sink that can execute code such as innerHTML or eval.

For reflected client-side XSS, multiple works [39, 41, 59]
used a modified browsing engine to taint dangerous flows
from a URL into executing sinks, to show that client-side
XSS is a prevalent problem even in the top most visited Web
applications. Steffens et al. [57] also used taint-tracking to
show the prevalence of persistent client-side XSS vulnerabil-
ities in the top 5,000 Web sites. They showed that 21% of
the sites that make use of data originating from client-side
storages are vulnerable to persistent client-side XSS.

2.2 Content Security Policy
A Web site’s operator can also deploy a proper Content Se-
curity Policy header to mitigate XSS [68]. CSP allows the
developer to specify the sources from which scripts can be
loaded through the script-src directive. This way, even in
the presence of an injection flaw, the attacker is limited to re-
lying on scripts that are allowed by the developer. By default,
CSP also forbids the usage of inline scripts, event handlers,

and the dreaded eval functionality. However, setting up a
restrictive and functional CSP has shown to be a hard task
due to third-party behavior [58], or the unusability [51] of
the mechanisms itself. Over the years, numerous papers have
shown that the vast majority of all policies in the wild are triv-
ially bypassable [9, 50, 66, 67]. And even those policies that
are considered meaningful can be bypassed via JSONP [66],
script-gadgets [40], or open redirects [49].

While in theory, a perfect CSP would mitigate the effect
of server- and client-side XSS attacks alike, such a policy
is hard — if not impossible — to craft for real-world Web
applications. In particular, for client-side code, sites often rely
on third parties for important functionality such as maps or
ads. However, as shown by Steffens et al. [58], these third
parties often require the usage of, e.g., eval. However, with
CSP, developers lack fine-grained per-party control over such
features: they can only decide to either allow all executions
of eval, which makes the application prone to client-side
XSS if the string-to-code conversion happens with attacker-
controlled input or to deny all string-to-code conversions,
which results in the loss of functionality. While academic
approaches to overcome this issue exist [43], these are limited
in both functionality and security and lack deployment in the
wild.

2.3 Trusted Types
Although the problem of client-side XSS and its prevalence
in Web applications is well understood, a proper defense or
mitigation technique is still missing. For example, Google
engineers enforce type safety on the backend such that dan-
gerous markup can never end up in the body of a response
without explicit sanitization [27]. To transfer this defense idea
to the client side, Google suggested Trusted Types [33] to
filter values before they flow into dangerous JS sinks such as
eval or innerHTML. To deploy Trusted Types, a developer
needs to set the CSP’s require-trusted-types-for direc-
tive to ’script’, enabling the enforcement by the browser.
In addition, they can provide a list of allowed sanitizer policy
names through the trusted-types directive to control the
number of sanitizers. Thus, enabling Trusted Types via the
CSP header only requires a fixed header to be deployed and
does not require additional configuration of the header.

In addition, as shown in Listing 1, the boilerplate code
for registering a sanitizer is simple. The challenging part
is to implement the actual functional yet secure sanitizers
(here sanitize{HTML,JS,URL}). Because we want our par-
ticipants to focus on the implementation of the sanitizers, and
because our prestudy (see Section 3.5) showed that deploying
the header is just a copy & paste task, we set the fixed header
value for the participants in our main study. Notably, Klein
et al. [30] have already investigated the quality of deployed
HTML sanitizers in the wild and classified 88 sanitizers used
on 102 different domains as bypassable and thus insecure,

window.TT = trustedTypes.createPolicy('default', {
createHTML: rawHTML => sanitizeHTML(rawHTML),
createScript: rawJS => sanitizeJS(rawJS),
createScriptURL: url => sanitizeURL(url)

});

Listing 1: Trusted Types API example.

emphasizing the importance of focussing on the sanitizers.
We want to extend this by investigating why developers fail to
deploy sanitizers for HTML, JS, and URLs in order to reveal
possible deployment roadblocks for TT. The results of Klein
et al. [30] and several vulnerabilities in the wild caused by
manually crafted and broken sanitization have shown that
developers should rather use established sanitizer libraries
instead of self-crafted sanitizers. However, in many cases,
custom sanitization is the only viable approach for deploying
TT. Ready-made sanitizers like DOMPurify [13] or the up-
coming HTML Sanitizer API [5] can only remove all code.
This lack of customization paired with the behavior of third
parties to inject content that contains (inline) JavaScript [58]
requires the developer to write custom sanitizer functions as
TT requires them to allow the specific code from their third
parties but disallow malicious code. Each site has unique re-
quirements caused by the first- and third-party code it runs,
requiring a TT sanitizer to be highly custom per site.

When enabled, Trusted Types enforces that all dangerous
client-side APIs that might lead to code execution can only
be used with a Trusted Types Object. To create those objects,
the developer can explicitly call the corresponding Trusted
Types sanitizer function, e.g., TT.createHTML(input). Al-
ternatively, they can define the special default policy, whose
respective sanitizers are implicitly invoked by the browser
when unsanitized data is passed to a dangerous sink. In a
2021 document, Kotowicz [32] reported on Google’s success
in deploying Trusted Types on 130 of their services. Further-
more, the report mentions that Google faced no client-side
XSS in their Trusted Types protected applications. The report
also mentioned that new tools and better framework support
can ease the deployment. In fact, Wang et al. [65] showed
how Trusted Types can be incorporated into Web frameworks
such as AngularJS. Hence, Trusted Types seem to have the
potential to be the panacea that client-side XSS requires.

2.4 Qualitative Methods
Given that we aim to explore the origins of behaviors and
misconceptions of a new mechanism, we chose the “bottom-
up” approach of a qualitative study design [24].

In the area of IT security, the qualitative analysis of
semi-structured interviews was already used to better under-
stand problems, misconceptions, and mindsets of developers
[37, 51], users [22, 25], or administrators [36] of IT systems.
Also qualitative analysis of online discussions about code in

different languages [12] or the usage of cryptography libraries
[45], or an analysis of Rust-related Stack Overflow questions
[69] have shed light on those problems.

While the qualitative analysis of interviews or online re-
sources is suitable for exploring a topic and investigating
concepts and trains of thought of participants on topics that
they are already familiar with, the investigation of previously
unknown scenarios needs a more controllable study setting,
namely lab studies. Here, the researcher can adjust the set-
tings of the study to observe if certain changes have possible
effects on the investigated scenario. In order to get qualitative
data out of those lab tasks, the participants can be asked to
think aloud such that the process sheds light on, for example,
the motivations behind certain decisions. For example, Acar
et al. [1] conducted an online coding task to access the usabil-
ity and security of cryptographic libraries. While Krombholz
et al. [35] performed a lab study and interviews to assess
challenges in deploying TLS, Tiefenau et al. [61] conducted
a lab study to evaluate the usability and security benefits of
using a semi-automated certificate generation for TLS, and
Mindermann et al. [42] conducted a lab study to evaluate the
usability of Crypto APIs in Rust.

To the best of our knowledge, the only other work that
specifically tackled the challenges of deploying a client-side
Web security mechanism has been conducted by Roth et al.
[51]. They used a lab study to investigate the deployment pro-
cess of a widely used security mechanism, namely CSP. They
conducted remote coding interviews with twelve developers to
find strategies, roadblocks, motivations, and misconceptions
regarding CSP deployment through a rather artificial setting
with an application intentionally containing CSP-hindering
features. Instead of artificially increasing the task’s complex-
ity, we instead rely on the usage of real-world third parties
to maximize the ecological validity of our results. Also, in
contrast to the fully standardized CSP, Trusted Types is still a
Working Draft. Thus, a usability evaluation of this new mech-
anism has the potential to improve the mechanism before its
widespread deployment would cause breaking changes.

3 Methodology

A GitHub discussion [16] of the World Wide Web Consortium
(W3C) showed that some browser vendors oppose the stan-
dardization and deployment of Trusted Types because they
claim it is too complicated for the long tail of sites. There-
fore, Trusted Types, as a new mechanism, is currently only
supported by Chromium-based browsers (from version 83,
May 2020) [10]. This work aims to uncover problems with
the current version of the mechanism and evaluate its ease of
deployment. This can aid the W3C to improve the mechanism
to enable developers to mitigate client-side XSS attacks.

Due to the youth of the mechanism and its limited support
in modern browsers, the adoption rate of the mechanism is
negligible. Therefore, the targets for our study are not Web

developers with experience with the mechanism, as it is nearly
non-existent, but rather the average Web developer who might
potentially use Trusted Types in the future. Together with
them, we want to get detailed insights into the deployment
process of Trusted Types from a controlled coding task. In
this way, we can uncover roadblocks and develop deployment
strategies for the mechanism.

Thus, our work has the following research goals: (1) What
roadblocks do developers face when implementing Trusted
Types sanitizers and which strategies do they apply? (Sec-
tion 4), and (2) How can the standard and overall deployment
process of Trusted Types be improved and what are the biggest
challenges? (Section 5)

3.1 Recruitment and Participants
To maximize the ecological validity of our results, the target
population for our study is real-world Web developers who
have experience with the development and deployment of
Web sites. Given that we want to study the deployability of
Trusted Types for all sorts of Web applications and given that
Trusted Types is not widely used by Web sites anyways, we
not only considered professional Web developers but also non-
professional Web developers, for example, students, as long
as they mention prior Web development experience during the
screening survey. Since Web developers are a hard-to-recruit
population [51], we relied on a combination of different re-
cruitment strategies to optimize outreach. First, we posted a
recruitment flyer on our institution’s social media channels.
The flyer contains details and timelines of the study procedure
as well as information about us and the compensation for the
study [53]. In addition to that, multiple researchers from our
team presented talks about Web security at multiple industry-
focused developer conferences. Those talks included a call for
participants for this study so that we could have direct contact
and immediately answer questions from the Web developers
who showed interest. Also, we used contacts of researchers
of our institution to industry and asked those people to for-
ward our recruitment Web site to their internal team chat or
in their Web development communities. We also posted our
call for participation on the platforms freelancer.com and
upwork.com to also get hands-on Web developers who are
not permanently employed in a development team. In general,
irrespective of the recruitment procedure, we always men-
tioned that in addition to the monetary compensation of 50C,
the participants could learn something about client-side XSS
vulnerabilities and how they can mitigate this issue for their
Web applications.

3.2 Screening Survey
To ensure a homogeneous set of participants who are all
security aware and have sufficient experience in Web develop-
ment, we conducted a screening questionnaire before inviting

selected participants to the actual interview. This survey in-
cluded 12 fields, where ten were actual questions about the
demographics of the participant, plus a field for the contact
email address as well as a feedback/issue field for the survey.
We developed the corresponding survey app ourselves and
self-hosted it under a subdomain of our institution to ensure
full and exclusive control over the data entered into the survey.

The landing page of the survey informs the participants
about the approximate time required for the survey (1-2 min-
utes) and the number of questions. Furthermore, they are
informed that all data will be treated confidentially and that
we will at no point disclose their identities or the sites they
operate. The page also includes information on who we are
and the terms and conditions of participating in the survey.
In the survey itself, the participants are asked to (optionally)
provide age, gender, current occupation, highest education,
country of living, and the size of the company that they are
working at. In addition to that, we also ask questions about
their experience in deploying or maintaining Web security
mechanisms, their IT security background, the Web presence
of their company, and questions regarding the development
team. With that information, we are then able to better assess
the participant’s eligibility for the study. Notably, all of the
input fields, except for the contact email, are optional.

After the survey, we manually check the eligibility of the
participants, and in case of a positive evaluation, invite them
to the actual interview via email. To be eligible, participants
must be a non-bot user, and their occupation should be related
to Web development or one of the other answers (e.g., "Do you
have any experience in deploying or maintaining Web secu-
rity mechanisms? If yes, which?") should show that they have
experience as a Web operator. The email consists of a short re-
minder regarding the schedule for the interview process, a link
to the interview scheduling system of the Nextcloud instance
hosted by our institution, and information about the interview
setup. To give the participants a comfortable environment, we
offer them the option to use any video conference software
that they want, as long as it allows for screen sharing for the
coding task. We also offer them different ways of setting up
the Web application for the coding task. They can either use a
docker image provided by us, can directly execute the Python
Django code, or can remotely control the interviewer’s ma-
chine (e.g., via Zoom or TeamViewer) to conduct the coding
task.

3.3 Interview
In the first few minutes of our interview, the researcher gives
the participant an introduction to the timeline of our interview
session. The interview is partitioned into questions regarding
the participant’s working environment, some questions about
Web security, the coding task, and a debriefing. The question
set about the working environment is to check the security
and Web development background of the participant but also

to get the chat between researcher and participant rolling.
After the general questions, we bring the conversation to

XSS to answer our question regarding the understanding of
this vulnerability and the differences between client- and
server-side XSS. Therefore, we explicitly asked our partici-
pants if they could explain to us how the vulnerability happens
and about the differences between client- and server-side XSS.
Here, we also try to find out if the participant knows client-
side execution sinks for XSS attacks. Next, we chat about
Web security mechanisms that come into the mind of the
participants when they want to defend against XSS, which
then transitions into questions regarding Trusted Types and
its method of operation. The question block is topped off with
questions about the impression of Trusted Types and if they
would use it in one of their Web applications. Then, the coding
task is performed, which we explain in detail in Section 3.4.
After the coding task, a set of debriefing questions will fol-
low. Based on the recent interactions with the deployment
of Trusted Types the impression of the mechanism might
have changed, which is why we ask about the feasibility of
Trusted Types as a defense mechanism against XSS. The last
question that we ask is about improvement suggestions for
Trusted Types, to assess which is the biggest problem that
currently hinders the successful deployment of Trusted Types.
Finally, the participant needs to fill out a System Usability
Scale (SUS) [7] to assess the usability of deploying Trusted
Types. The SUS questionnaire contained ten questions on a
five-point Likert scale.

3.4 Coding Task
In our coding task, we ask the participants to deploy Trusted
Types for a small Web application, while the main work in
the case of the deployment process is the implementation
of the sanitizer functions. The Web application itself uses
features, libraries, and frameworks that are frequently used
by real-world Web applications to increase the ecological
validity of the data we gathered throughout the coding task.
We explain details of how we chose those in Section 3.4.1.
Notably, throughout the coding interviews, the functionality
of the Web application had to be changed to ease the initial
deployment process such that we could get more fine-grained
insights into the later deployment steps, but also to lower
the level of frustration of the participants because they could
get nowhere near to a proper solution. Due to our usage of
real-world third parties for a better ecological validity of our
results, we also had changes in the functionality of the ap-
plication that were not driven by us but by third parties that
changed the way their libraries operate during our study. We
explain the exact changes of this iterative interview process
in detail in Section 4.2.

Third-Party Site (eTLD+1) Inclusions (# Sites)

google-analytics.com 2,626
googletagmanager.com 2,329
gstatic.com 2,311
doubleclick.net 2,162
google.com 2,132
facebook.net 1,632
youtube.com 1,571
googleadservices.com 1,359
googleapis.com 1,233
twitter.com 988

Table 1: Top 10 third parties by inclusions

3.4.1 Web Application

The Web application’s backend is written in Python 3.10 using
the Django Framework. For Trusted Types, the actual backend
language is less important because of the main work, i.e.,
the Trusted Types sanitizer being implemented in JavaScript.
Also, as Trusted Types is enforced on the client side, client-
side technologies used by Web sites are more important for
our demo application than the server-side technologies.

To gather data about the usage statistics of third-party
JavaScript we crawled the Tranco Top 5k sites [38, 62] with
a Chromium browser instrumented by puppeteer [18]. Our
crawl also collected the URLs present on the loaded page
and visited those up to two levels of links from the start page,
while crawling at most 500 URLs per site. During a page load,
we waited a maximum of 20 seconds for the load event to
be fired and then an additional 5 seconds before we continue.
During this time, we capture all loaded script URLs.

In Table 1, we show the top 10 sites, by the number of in-
cluding sites, that were loaded during our crawl. The most re-
quested site by far was google-analytics.com, with 2,626
sites that included scripts from it. Due to this prevalence of the
service in real-world Web applications, our demo application
also uses Google Analytics.

Advertisements, specifically those from
doubleclick.net, were also used frequently (on 2,162
sites). However, showing real advertisements to our par-
ticipants would put costs without benefits on those who
ordered the advertisement. These costs would not only be
problematic from an ethical point of view but could also
make us accountable for ad fraud. Therefore, instead of just
ignoring the prevalence of advertisements in real-world
applications, we decided to create a custom advertisement
service for the Web application. Notably, a Trusted Types
policy consists of three sanitizer functions. Thus, our coding
task should require the participants to implement all three
sanitizers. No other third-party service that we included used
eval conversion (which requires the createScript sanitizer),
although Steffens et al. [58] showed that in 58.5% of the

Framework Usage (# Sites)

jQuery 1,005
Bootstrap 358
Dojo Toolkit 79
Vue.js 75
Angular 68
Backbone.js 19
Ember.js 1

Table 2: Usage of JS frameworks

sites, their third parties mandate the usage of unsafe-eval in
the sites CSP. To not lose this part of the deployment, we
designed an ad service that uses eval to ensure a realistic
setting even without including actual real-world ads.

The biggest player in terms of social media integration was
facebook.net. The majority of those page loads (742/1,632)
were inclusions of the script that includes their widget. This is
why we also included this feature in our application. Notably,
336 of the sites that used the Facebook integration also used
the Twitter widget at the same time, which is why we also
incorporated the Twitter widget in our Web application.

Another common third-party service used in Web sites is
the integration of maps. Because the most widely used service
here (Google Maps) needed a domain name to properly use
all features – yet we only used a local setup for our study –
we had to use a different service that supported our use case.
Therefore, we used openstreetmap.org as maps integration.
In addition to that, we also showed a news blog that used the
third-party comment system disqus.com. As we discuss in
Section 3.5, we removed these after the pre-study.

To determine the most frequently used client-side frame-
works, we investigate both the included URLs as well as the
script content to detect libraries. Table 2 shows that jQuery
is by far the most used framework with over 1k sites that use
it. Notably, the intersection of those sites with those from the
second most used framework (Bootstrap) shows that 62.8%
(225/358) of the sites that are using Bootstrap are also using
jQuery. Thus, we used a combination of Bootstrap and jQuery
to build our Web application.

3.5 Pre-Study
To ensure that our coding task and its setup do not contain
errors and can be solved, such that no participant is frustrated
after the interview, we conducted a pre-study involving two
participants (P1 & P2). Both worked for an IT company, one
as a developer and the other one in their security incident
response team. Notably, both took Web-related university
courses. By selecting participants who are presumably less
trained in deploying features for real-world Web sites, we
want to find a lower bound for the scope of our coding task.

Given that neither of the participants of the pre-study was
close to sufficiently deploying Trusted Types for the Web ap-
plication, we decided to remove some features from the Web
site to ease the deployment. We based the decision of which
of the third parties to drop on the results presented in Table 1.
Thus, we removed the subpages that use maps integration and
the disqus.com. We also added code snippets in the coding
task to speed up the deployment. The pre-study showed that
participants copy-paste the CSP header that enables Trusted
Types and the skeleton for the sanitizer functions from online
resources. As mentioned in Section 2.3 the header has a fixed
value and does not require sophisticated configuration. Thus,
by adding them to the source code files, we put the focus on
the challenging part, the creation of the sanitizer functions,
and at the same time we reduce the setup time for the coding
task. The pre-study also showed that our interview guideline
(see Appendix A) was sufficient to answer our research ques-
tions. From the transcribed interviews we were able to learn
more about the developer’s mental model of XSS, especially
client-side XSS, and uncover roadblocks as well as strate-
gies for Trusted Types deployment. In addition to that, the
interviews also shed light on the participant’s perceptions of
Trusted Types and motivations and disincentives to deploy it.

3.6 Data Analysis
For the analysis of the collected data, we used the GDPR-
compliant online transcription service amberscript.com.
Here we used the Human-made mode which ensures that the
transcriptions are created by professional transcribers and cap-
tioners. The first author who conducted the study discussed
interesting concepts that arose during interviews or coding
tasks with the others. Based on these, the first author built the
codebook iteratively, with a technology-centric lens of anal-
ysis in an open coding approach [60]. To better analyze the
results of the coding task and not miss important information,
the recordings of the shared screen during the coding task
were also considered during the analysis. We continued con-
ducting interviews and analyzing them until no new concepts
were added to the codebook from the latest two interviews.
After reaching our criteria for saturation of our dataset, the
main author handed over three interviews with the saturated
version of the codebook (see Replication Package [11]) to
two other authors to calculate the inter-coder reliability of our
results. We selected three interviews that provide the broadest
coverage of codes. The average inter-coder reliability Krip-
pendorff α [34] was 0.987. We assume the near-perfect score
is due to our codes capturing technical concepts, which does
not leave much room for interpretation.

To better evaluate the mindset of our participants and to get
a better understanding of the occurring roadblocks and the
strategies that the developer chooses, our codes are segmented
into high-level categories and more detailed low-level infor-
mation. If, for example, a participant struggled with Trusted

Types deployment due to a programmatically added source-
less iframe, we assigned the code ”Roadblock: Same-Origin
Iframe”, where Roadblock is our high-level category and
Same-Origin Iframe the low-level description. Following the
methodology of previous research [45, 51, 54] to identify
emerging concepts, patterns, and themes, we analyzed our
data using thematic analysis [6]. We then used axial coding
[60] to find relations between those concepts and patterns.
For example, we analyzed the connection between roadblocks
and the applied strategy to explore which factors in the de-
ployment process can lead to the success or failure of the
deployment of Trusted Types.

3.7 Ethical Considerations
To the best of our knowledge, we designed our interview, the
coding task, and the data collection process always with the
risks and benefits for the participant in mind. The participants
had the freedom of choice to use their own machine for the
coding task or to remote control the interviewer’s machine.
While using their own device is closer to the participant’s
normal and familiar coding behavior, the required installa-
tion of Python and Django might be perceived as invasive.
However, they could have used the Dockerfiles to create an
easy-to-remove docker image that runs our code.

In case the participants used a browser on their own device
to access the Web application, the current IP address of the
user is leaked to third parties as the app performs requests to
Google Analytics, Twitter, and Facebook. We decided to still
use those real-world third parties to maximize the ecological
validity of our results.

Also, our participants, especially those from the pre-study,
may have become exceedingly frustrated when they, after
90 minutes, were not even close to a proper solution. This
was one of the main reasons why we cut down some of the
features of our application so that we do not leave behind a
long-lasting bad feeling of working with Trusted Types or
deploying security features.

As noted before, we used Amberscript to transcribe the
audio of our interview sessions. Notably, we uploaded the
audio (not the video) track to only reveal the necessary min-
imum to the service. Also, Amberscript is fully compliant
with GDPR and advertises their service by guaranteeing full
confidentiality, transparency, and non-disclosure agreements
of all the transcribers [8]. In addition to that, all participants
gave their electronic consent in the initial survey and again
verbal consent to our data collection and processing methods
at the beginning of the interview. All data (on our side and on
Amberscript) was processed and stored in compliance with
the General Data Protection Regulation (GDPR), and the en-
tire methodology of our study and data collection processes
have been approved by our Ethical Review Board (ERB).

4 Results

In this section, we present the results of our analysis, starting
with the demographics of our participants. We then elaborate
on the participant’s mindset regarding the difference between
client- and server-side XSS, highlight the different roadblocks
that we investigated for Trusted Types deployment, and shed
light on different deployment strategies and their success.

Without the pre-study participants, the average length of
an interview was 01h 23min 09s (Median: 01:24:20, Min:
01:02:25, Max: 01:44:50). The first non-pre-study interview
was conducted in July 2022, the last one in April 2023.

4.1 Participant Demographics & Background
Our main study population consisted of 13 participants (12
male + one female). Their age ranged from 20 to 50 years.
Although we posted our call for participation on the platforms
freelancer.com and upwork.com, we have not received any of-
fers from users on those platforms. Therefore, all participants
found out about our study either based on talks at industry
conferences, social media channel postings (5 participants),
or direct contacts who forwarded the recruitment flyer to their
web development teams (8 participants). Our survey asked
the age in intervals of ten, e.g., 30-40, to not be too privacy-
invasive. Appendix B shows an overview of the demographics
of all interview participants.

In total, the survey received 50 submissions, of which 28
were eligible and invited to the study. 13 answered our invita-
tion emails or the reminders we sent after one week and later
participated in the interview.

Three participants are working in an IT security field, e.g.,
an Incident Response Team, while one of them also consid-
ered themselves as casual Web developer because they cre-
ated small Web applications, e.g., for personal use. Eleven
are working as Web developers, where one of them also men-
tioned IT security as one of his work areas. Also, one of the
Web developers is at the same time working in DevOps, which
was also mentioned by one other participant.

Regarding security education, seven participants mentioned
that they took security-related courses during their studies.
The other six participants had taken courses or certificates
for IT security but reported to have self-taught knowledge
about the topic via videos and blog posts. Thus, we reached
our target to conduct this study with a homogeneous set of
participants who are security aware and familiar with Web
development. We also had two participants who admitted that
they were not educated in the area of Web security but only
read a few articles about XSS.

During the chat about Trusted Types, eight participants
stated that they had never heard about the mechanism before,
while the others did not explicitly mention knowing (or not
knowing) Trusted Types before participating in our study. We
also asked the participants about their knowledge of XSS

mitigation techniques. Here, seven participants mentioned
CSP, ten mentioned proper sanitization and/or filtering of
user-controlled input, and one considered Web Application
Firewalls (WAF) a mitigation for XSS. Notably, many of the
participants mentioned multiple mitigation techniques here,
so our participants proved to be knowledgeable regarding the
mitigation of XSS attacks.

4.2 Strategies & Roadblocks for Trusted Types
Based on the approaches that we had observed throughout the
coding tasks, we created a workflow diagram (shown in Fig-
ure 1) that we use in this section to shed light on the different
roadblocks that we investigated in the different deployment
stages. We also explain in detail the changes in the Web appli-
cation and the reasons for those changes. In addition to that,
we discuss the implications of the decisions and strategies
on the success of the deployment process. We mitigate bias
by carefully introducing participants to the task, starting by
explicitly telling them to act as if they were doing this in
their company or for their own projects and that they can and
should use any resources and libraries (see Appendix A).

Stage 1: Enforcement and Initial Deployment

Participants P3 & P4 deployed CSP very late, after writing at
least one sanitizer such that they were overwhelmed by the
number of errors that were caused. Also, participants P5 &
P6 did not manage to deploy a CSP. To get deeper insights
into the deployment process, we tried to ease this part of the
process. Thus, we added commented-out boilerplate code to
set a CSP header that enabled Trusted Types for scripts and
enforced a default policy. Also, the participants were confused
about using named policies, because one of the information
sources recommended their usage.

”Is this the default policy? Because they had something written here, you
should not always take the default, but tinker with the specific one.”

– Participant 12

However, this is impossible for third-party code that is
unaware of Trusted Types deployment since that would have
to explicitly invoke the named sanitizer (rather than implicitly
invoke the default one). Therefore, we added boilerplate code
for a default Trusted Types policy, which simply returns the
input without modifications for all sanitizers after P5.

With the new changes, participant P7 managed to deploy
the CSP that enforces the default policy with a sanitizer, which
simply returns its input and therefore does not add security.
However, the enforcement of this default policy resulted in
errors caused by Twitter’s usage of source-less same-origin
iframes for their timeline widget. Those kinds of iframes
inherit the CSP policy that mandates the usage of Trusted
Types, but they do not inherit the sanitizer functions. Requir-
ing the usage of those functions without them being present
then results in multiple errors. Notably, Twitter’s behavior

 START Deployed
a CSP? No

Yes

Used default
policy?Yes

Yes

No

Used named
policy?

FAILFAIL
No

createHTML createScriptURL

No

Use 3rd-party
sanitizer?

Non-trivially bypassable
Trusted Types policy

Yes Yes

No

Used list of
allowed URLs

FAILFAIL

createScript

FAIL

Use regular
expression

Use signatures
for JS code

Move to
x-origin iframe

Re-use HTML
sanitizer

AST-based
allow-list

Issue with
sourceless iframe

Allow based on
JS stracktrace

Stage 1

Stage 2

Stage 3

Stage 4

Figure 1: Diagram of the deployment workflow based on our participants.

regarding how the widget is built changed throughout the pro-
cess of this study. To our question in the Twitter Community
Hub [63], they acknowledged that this change is more of a
usability/accessibility-driven change because the server-side
rendering of the timeline is reducing the loading time of the
widget rather than easing Trusted Types deployment.

Stage 2: HTML Sanitizer

All participants started with implementing the createHTML
sanitizer. Participants P4, P7, P8, P11, and P12 used a third-
party HTML sanitizer (DOMPurify [13]) to implement the
createHTML function. Because none of the third parties that
we used required the usage of adding JavaScript in any form
into the DOM, this path led to a successful deployment of the
createHTML sanitizer.

”There was also a library recommended here. If OWASP recommends
DOMPurify, then I’ll take it!”

– Participant 11

The other participants (P3, P5, P6, P9, P10) implemented
the sanitizers themselves, which in all cases led to an easily by-
passable filter. Most participants started by copy-pasting the
example sanitizer from one of the information sources. This
sanitizer, however, replaces all < with their HTML equivalent
(<); thus, all inserted tags are destroyed, which causes
Twitter and Facebook not to work anymore. Some of them
(P6, P10) then changed this code to only remove <script.
This is utterly insecure since an attacker can still inject an in-
line event handler ().

Thus, in total, all custom sanitizers were trivially bypassable,
so only seven out of 13 participants managed to implement a
secure HTML sanitizer function for Trusted Types.

Stage 3: JS Sanitizer

Five of our participants (P4, P7 & P10-12) first reused their
createHTML sanitizer to also sanitize JavaScript. Both the
participant’s custom HTML sanitizers as well as DOMPurify
replace an opening HTML tag (<) with its encoded equiva-
lent (<) or the empty string. The evaluated code from the
custom advertisement widget contains the following snippet:

for (let i = 1; i <= 5; i++) { ... }

With the HTML sanitizer function, this code was therefore
changed to, for example:

for (let i = 1; i <= 5; i++) { ... }

Thus, the change causes a syntax error during the eval call.
The participants that took this path needed quite a bit to notice
this, as Chromium only pointed to the call of the eval for the
syntax error. To find the root cause of the error, the developers
were required to investigate how this functionality works in
detail, determine the source of the evaluated source code, and
compare it with the result of the sanitizer.

Those participants who did not re-use their createHTML
and those who afterward changed their sanitizer due to the
errors mentioned above mentioned diverse ways how to im-
plement the createScript sanitizer. Participants 6, 8 & 13

mentioned that Regular Expressions could be used to differ-
entiate between benign and attacker-controlled code. The pos-
sibility to base the createScript sanitizer on cryptographic
signatures to only evaluate benign code was mentioned by
participant 11. Another solution mentioned by two of our
participants (P7 & P11), tried to circumvent the problem by
moving the code that required the usage of eval into cross-
origin iframes such that their execution context differs and
Trusted Types are not inherited into the iframe. Participant
13 also mentioned the possibility of raising and catching a
custom JavaScript Exception in order to use the stack trace of
the JS execution to allow specific code snippets to run, while
participant 10 thought about an allowlist-based on the Ab-
stract Syntax Tree (AST) of the code snippet. We discuss the
(in)feasibility of those sanitization approaches in Section 5.3.

Stage 4: URL Sanitizer

Also, here five participants re-used the HTML sanitizer, but be-
cause the URLs in our application did not contain any HTML
characters, like <, they did not recognize that this might be
an issue. The five participants that noticed or directly cre-
ated a sanitizer themselves used an allowlist-based approach.
Throughout that process, some participants noticed that the
dynamically added URLs contained a changing string.

”It is a hash here. I could well imagine that it changes with every refresh
or so.”

– Participant 8

In those cases, the participants changed their implementa-
tion to an allowlist based on hostnames rather than URLs or
used the startsWith function to check for the URL without
considering the seemingly random string. As ignoring the
URL path might lead to JSONP-based script executions [66]
or open redirects [49] being possible, the startsWith or
host-based allowlist is still trivially bypassable.

Notably, we also had three participants who gave up or ran
into time issues during the implementation of the createScript
sanitizer and did not implement the createScriptURL sanitizer.

Using AI for a solution:

During the introduction of the coding task, we mentioned that
the participants could freely choose their information sources
and that they could use anything during the coding task that
they considered helpful. One participant used the AI-based
GitHub Copilot to write the Trusted Types sanitizer functions.

”I could actually be quite bold here once and say:
’// Generate Trusted Types using DOMPurify”’

– Participant 12

The generated code for the createHTML sanitizer was cor-
rect because it simply used DOMPurify (without actually im-
porting it, though). However, the generated code for the other
two sanitizers also used DOMPurify, which not only resulted
in trivially bypassable sanitizers as the library is not designed

to sanitize JavaScript code or URLs, but it also caused the
ad feature of the application to not work anymore due to the
reasons explained in Section 4.2. See Listing 2 for the entire
output of the GitHub Copilot.

4.3 Client- vs. Server-side XSS
While eleven participants properly explained the concept of
server-side XSS, only eight of those managed to describe
client-side XSS and the difference between them. Notably,
the participants who did not know the difference between the
different XSS types failed to create a proper sanitizer as they,
for example, tried to write a customized sanitization function.

”In the real world, if I wanted to protect against XSS attacks, I wouldn’t
just use JavaScript, I would use PHP, which has much more functions!”

– Participant 6

Those custom HTML sanitizers also ignored the fact that
JS cannot only be executed by script tags but also via event
handlers or URLs, as they only removed script tags but
nothing else. Therefore, JavaScript URLs (URLs using the
javascript: schema), or onload/onerror JavaScript han-
dlers of, for example, HTML image tags, can be used to exe-
cute malicious code. Also, those participants spent quite some
time creating those trivially bypassable filters and, therefore,
did not manage to work on sanitizing JavaScript code or script
URLs.

4.4 Perceptions on XSS and Trusted Types
From the seven participants that used third-party sanitiza-
tion libraries to implement the createHTML sanitizer, four
explained that they are doing this because self-created saniti-
zation functions or custom security solutions, in general, are
prone to be bypassable.

”Looks like a lot of manual work and gives the user many possibilities to
do things wrong with this API”

– Participant 10

While this perception of sanitization seemingly pushed the
participants into using proper sanitization libraries instead of
creating a sanitizer themself, others might cause them to incau-
tiously write dangerous code, as five participants mentioned
that if you use common frameworks, XSS attacks cannot
happen anymore or are at least mitigated by default.

”I don’t know how all these frameworks, like React or something do that,
that they don’t have XSS.”

– Participant 4

However, although React automatically escapes string vari-
ables in views if added to the DOM, there are still XSS vectors
that are not secured per default. Despite the trivial exploitabil-
ity if functions like dangerouslySetInnerHTML are present,
it is also possible to execute JavaScript by setting href or
src attributes of HTML tags to javascript: or data: URIs
[46]. Even if frameworks would secure all first-party code,

the common practice in the Web to include third-party code,
which might contain client-side XSS vulnerabilities, can still
cause harm to the users of the Web application.

4.5 Usability Perspective
In total ten of our participants sent us the filled-out SUS
survey. The highest SUS score was 80, the lowest 32.5, and
the average was 58.75. The average score indicates that people
rate Trusted Types as only marginally acceptable [2].

During the interviews, all participants mentioned that
they see XSS as a big problem in modern Web applications.
We also asked the participants before and after the coding
task if they would use Trusted Types for one of their Web
applications. Ten of the 13 participants rated TT more
negatively after having completed the coding task. For five of
those, the engineering effort of the deployment was the main
concern. They especially mentioned that the deployment
of Trusted Types into an existing application is hard due to
existing code that needs to be restructured or third parties
that need to be replaced. They claim that this would be
considerably easier if security was considered from the
planning phase of a project. Three participants explicitly
mentioned this was a reason to only consider Trusted Types
for private projects and that they would not use it in their
company. Nearly all participants also explicitly mentioned
the massive time and engineering effort in properly filtering
or sanitizing JavaScript via the createScript sanitizer. This
indicates that developers want to defend against XSS attacks;
however, they think it requires time and engineering effort.

Key roadblocks for Trusted Types

Misconceptions about third-party sanitizers are causing
disfunctional or bypassable sanitizers, as, e.g., HTML
sanitizers are used for JS or URL sanitization.
As depicted in Stage 1, Information Sources provide
misleading/superficial information, which is why, e.g.,
the choice between a Named or Default policy caused
troubles during the deployment as only default policies
work in real-world settings with third-parties.
Stage 2 of the deployment process reveals that
JavaScript sanitization is hard up to impossible and
requires heavy engineering effort.

5 Discussion

This section explains in detail some of the problems that our
participants faced and discusses ways how those issues can
be fixed or mitigated. Additionally, we discuss improvement
suggestions that our participants mentioned after the coding

task. Also, we discuss the limitations of this work at the end
of this section.

5.1 Sourceless iframe Problem
CSP inheritance rules dictate that when a sourceless iframe
(i.e., one without a src property) is encountered by the
browser, the parent’s CSP is enforced. This is necessary since,
otherwise, an adversary could trivially bypass CSP’s protec-
tion. In this scenario, assume an attacker capable of injecting
markup into a page. They could then inject an iframe tag with
a srcdoc attribute, which allows to specify the HTML (and
thus JavaScript) rendered in the iframe. If now the parent’s
CSP would not be inherited, the attacker’s code could run
unimpaired in the origin of the parent’s execution context.

For the first seven interviews, Twitter’s timeline widget
was loaded via a script that created a sourceless iframe, which
then contains the requested timeline. This comes with a spe-
cific issue, which was identified and explicitly noted by one
of the participants. Since the sourceless iframe is a differ-
ent JavaScript context, none of the defined functions of the
parent’s document are available in the iframe. Since the ac-
tual sanitizers are implemented in JavaScript, this also means
they are not present in the iframe. As a result, the iframe
enforces the usage of a Trusted Types policy for which no
default sanitizer exists, which, therefore, will result in errors
and malfunction of the Twitter timeline widget.

One way for developers to fix this issue themself is to hook
calls to all of the functions that can be used to append elements
to the DOM (e.g., insertBefore or appendChild) and in
case of an iframe being added directly inject the Trusted Types
sanitizer into this frame (see Listing 3). We cannot hook the
element creation of the iframe here as we can only script into
iframes that are already added to the DOM. If now, however,
code in these iframes again creates sourceless iframes, the
problem will reoccur such that the JavaScript snippets that
inject the sanitizers into added iframes need to be aware of
their source code and inject themselves into the iframe such
that all iframes are covered.

The above-mentioned solution can be solved through
proper boilerplate code, yet developers should not have to
deal with this issue in the first place. Instead, we propose
that the standard be adjusted such that all registered sanitiz-
ers are passed on to sourceless iframes automatically. This
way, the code in the iframe can make use of explicit saniti-
zation through the named sanitizers, but more importantly,
any code that is agnostic to Trusted Types still works as the
default sanitizer is called implicitly. We note that if the iframe
requires the usage of a separate sanitizer, it suffices for the
main page’s CSP to specify an allowed name for a sanitizer
yet not register it. This way, the iframe’s code can register and
use the sanitizer with the previously unused name.

5.2 Standardized & Customizable Sanitization
Third-party sanitization libraries such as DOMPurify were
used by seven of our participants. Notably, six of them then
used this sanitizer for HTML content, also for JavaScript code
and URLs, but three of them later noticed that this could not
work. Thus, the initial misconception of DOMPurify as a
general-purpose sanitizer was problematic. One participant
also noted that leveraging a third-party library can be ben-
eficial, yet requires this third-party sanitizer to be updated
constantly in the face of potentially new variants of XSS.

”XSS attacks, they are always evolving. I’m not sure if Trusted Types can
also keep up.”

– Participant 6

Notably, the planned Web Sanitizer API [5] would fix those
issues or at least shift the responsibility from the operators to
the browser vendors’ side. However, the Web Sanitizer API
can only be used for createHTML, but not for createScript,
as it can also only sanitize HTML content. Also, at the time of
writing, the Web Sanitizer API is all-or-nothing – it can only
remove all dangerous constructs but has no way to exempt cer-
tain scripts required by the page to function properly. While
it might be feasible for the first party to update their code to
not dynamically add script tags and hence be compliant with
usage of the Web Sanitizer API, functionality of third parties
depends on the coding practice of parties beyond the control
of the site’s developer.

5.3 Sanitizing JavaScript
As mentioned earlier, but also pointed out by our participants,
the createScript sanitizer is the hardest part as it can nei-
ther be solved properly by an allowlist nor are there existing
sanitization libraries or APIs for that task.

”createScript is another beast, because it checks the created JavaScript
strings. Of course, it is difficult to ensure that this is valid at all, whether

it is secure or not.”
– Participant 8

Nevertheless, our participants mentioned or even imple-
mented some ways how we might be able to sanitize or dis-
tinguish attacker code from benign code (see Section 4.2).
During the implementation of the createScript sanitizer,
participant 10 thought about an allowlist based on the Ab-
stract Syntax Tree (AST). However, an attacker could then
still create malicious JavaScript with the same AST [17] as
the benign and allowed snippets and thus bypass the sanitizer.

Participant 11 mentioned that one way to allow specific
scripts to be executed is signatures to ensure that the origin of
that script is trusted. However, while this works for external
resources under the control of the operator, it will only work
for third-party scripts if the developer convinces this party
to change their functionality to also sign the code that they
deliver to the application.

Participants 6, 8 & 13 suggested Regular Expressions to
only allow code with a certain pattern. Besides this only
being maintainable at a small scale, it might be bypassable
as attackers may be able to write their attacker code in the
benign and allowed pattern.

”We can not insert a general-purpose sanitizer here now. Maybe Regex,
but how efficient is that, then? And if-else stories about plain text

comparisons of any script content is also kind of difficult.”
– Participant 8

Notably, participant 13 mentioned the possibility to raise
and catch exceptions in order to create an allowlist based on
the caller of the function. This was also our sample solution
(see Listing 4) for createScript. Here, we used the call
stack to allow JavaScript execution from specific functions or
parties via the stacktrace. While this might yield a functional
solution, it shifts the trust to the third-party developer: if their
JavaScript code has an exploitable XSS flaw, an adversary
can simply exploit that to attack the including site.

Participants 7 & 11 mentioned that instead of somehow im-
plementing the sanitizer, they would rather move the content
that requires the usage of string-to-code conversion into an
iframe that runs under a different origin. While this works for
the third parties that we used, others will not work properly
anymore as some advertisements require access to the Web
page (including its DOM) [15]. Also, this solution is more
of a compartmentalization than an actual sanitization, hence
somewhat beside the point of Trusted Types.

5.4 Impact of Information Sources
The information sources at the time of writing focused on
named policies rather than default policies. One of the infor-
mation sources [31] suggested to ”[u]se the default policy
sparingly, and prefer refactoring the application to use regular
policies instead". For four of our participants (P5, P5, P8 &
P9), this suggestion caused problems as they first tried to use
named policies and then later on noticed that they needed to
implement a default policy anyway because they could not
change the JS code provided by third parties.

”I found it difficult in the explanations how to handle own policies or
how to set default policies.”

– Participant 8

While the usage of named policies enables the developer to
create sanitizer functions that are customized towards the data
that flows into the respective sink, creating the policies and
refactoring the code is work that should be done after having
the default policy as a fallback, such that the developer is not
overwhelmed by the number of errors. Thus, we argue that
information sources should advertise the usage of a default
policy as a first step and then the usage of named policies
for certain parts of the application to harden the protection
offered by Trusted Types.

”I could imagine, for example, would be to somehow outsource that into
an iframe or something. So, to sandbox that, if I already have such a

case. But that would be a completely different topic.”
– Participant 11

Seven participants also complained about insufficient ex-
amples, especially for the usage of a default policy and the
createScript and createScriptURL sanitizer functions.
The examples on the information sources only contain ex-
plicit examples where strings are sanitized but only superficial
examples of the sanitizers.

”In the examples here, there are just the strings that can be escaped and
then appended, but I don’t have any strings here to work with”

– Participant 3

The missing examples for the non-HTML sanitizer might
be one of the reasons why seven participants initially used
the examples for the createHTML sanitizer for all three san-
itizers. Using the HTML sanitizer for JavaScript and URLs
is not only insecure as it does not really sanitize anything for
those strings but also leads to a loss of functionality depend-
ing on the third-party JavaScript code, as we have pointed
out in Section 4.2. To ease the debugging process for code
that is evaluated through string-to-code conversation, browser
vendors might consider changing their error output for those
functions to point to the evaluated string.

In general, our participants (P3, P5) mentioned that the
information sources for Trusted Types only provide superficial
information on the use case and the deployment process.

”Just with the half-hour now, I understood it much better than just in the
article, and it makes complete sense to me now why I would use those.”

– Participant 5

To improve the situation, we used our results to create an
information source [11] with a roadmap for successful Trusted
Types deployment with explanations and code examples for
each of the individual deployment steps. We also plan to
incorporate edge case examples, like the hook for dynamic
iframe additions or an HTML parser that preserves specific
event handlers.

5.5 Implications for the Trusted Types Design
Based on the roadblocks that we have seen and our partici-
pants’ improvement suggestions and feedback, we elaborate
on different implications for the design of Trusted Types in
order to improve the mechanism.

One root cause of the roadblocks was that the information
sources only provided superficial information about Trusted
Types, such as only explaining the CSP header but not provid-
ing information about the sanitizers. But even in those cases
where the information source tried to explain the sanitizers,
participants noted insufficient or misleading examples. The
focus on named policies, with the reason of a more explicit
way of securing a Web application, misled participants to use
only named policies, but not default ones, which resulted in
the failure of third-party code. Thus, we recommended that

Trusted Types need to have high-quality information sources
with guidelines, examples, and detailed explanations.

Also, the rather technical problems of same-origin iframes
or complicated workarounds to get more contextual infor-
mation about the script execution can be at least eased by
automating those workarounds. Given that the policies are
registered using a centralized API call, it should be easy to
automatically inherit all policies to same-origin iframes, such
that those are not causing any issues anymore. In addition to
that, the sanitizers could get an additional argument that gives
contextual information, such as the call stack, that developers
can then use to create an allowlist.

To further ease the creation of sanitizers, pre-configured
sanitizing APIs, such as the planned Web Sanitizer API [5],
should be provided. Notably, those APIs should provide the
capability to allow specific inline scripts and/or events inside
the injected HTML in order to enable the sanitization of
third-party code. This could be done by either using code
hashes or context information from the developer or, even
better, the createHTML sanitizer could invoke the createScript
sanitizer for inline script tags and inline events to not mix up
the different steps, as suggested by participant 13.

Similar to CSP [51, 58], third-party scripts are also a big
problem for the deployment of Trusted Types. It is hard to
find a technical solution for this problem, which is why we
argue that a political solution, e.g., by the W3C has to be
elaborated to encourage third parties to be compliant with
security mechanisms. One idea would be to have a warning
icon similar to those for unencrypted connections if the Web
site is not deploying properly configured security mechanisms.
This way, companies would choose their partner services with
care, and those that do not adhere to compliant coding styles
will lose customers and, thus, revenue. Of course, this idea
first should be tested and scientifically evaluated by us as a
research community, e.g., by creating such a system in a study
that follows a participatory design approach.

Key problems for each sanitizer

createHTML: As the example of DOMPurify and the
Sanitizer API show, current libraries make it hard up
to impossible to preserve JS code in HTML as they
remove all existing JS code from the HTML.
createScript: There is (currently) no proper way of san-
itizing JS code, as Stage 2 has shown that all sanitization
ideas from the participants are bypassable. The only se-
cure but hard-to-maintain solution would be using code
hashes, which are hard to use here due to WebCrypto
not being available in synchronous contexts.
createScriptURL: Randomness in URLs causes the
use of startsWith (or RegEx), as shown by our par-
ticipants. This, however, may cause bypasses through
JSONP or Open Redirects.

5.6 Recommendations
This section provides a clear list of recommendations for all
parties involved in the development or deployment of TT.

5.6.1 For Browser Vendors

(1) Ease the implementation of the HTML sanitizer, e.g., by
introducing an allow list of not removed scripts or by call-
ing the other sanitizers as soon as script tags or inline JS
handlers are faced. (2) To get rid of the sourceless iframe
problem, browsers could think about inheriting all registered
TT sanitizers if a CSP containing the trusted-types keyword is
inherited, which would also fix other security issues regarding
TT and iframes [64].

5.6.2 For Developers

(1) Think about TT integration from the beginning of a project,
as certain coding practices (e.g., sourceless iframes) make
it hard to deploy TT. (2) Although named policies are more
descriptive, developers should use default policies for existing
projects such that they do not need to change the entire code
base, but the sanitizer is automatically called.(3) As in the
case of other CSP features [51], developers should, if possible,
choose third parties with care as they might have behavior
that makes it hard to deploy TT (e.g., injecting content with
inline JS handlers).

5.6.3 For the Community

(1) As information sources and descriptions of sanitizers are
causing misconceptions that lead to dysfunctional sanitizers,
the security community needs to work on better materials to
adhere to real-world scenarios. (2) The sanitization of JS code
seems to be one of the biggest roadblocks for deploying TT.
Here, we need to work on better tools and evaluate them to
allow developers to easily distinguish between benign and
malicious code.

5.7 Limitations
In addition to the expected limitations of self-reported data
in interview studies (e.g., recall bias, social desirability bias),
we acknowledge observer bias during the coding task. To
mitigate this, we emphasized that we are not testing partici-
pants’ knowledge or ability to deploy Trusted Types but are
relying on their help to evaluate the header. Further, restrict-
ing the coding task to 90 minutes may limit how participants
engage with Trusted Types. However, we argue that if a se-
curity mechanism needs massive engineering effort even for
a small Web application, the deployment for complex Web
applications in the wild will be challenging due to monetary
and time constraints. Also, we acknowledge that supervised
coding tasks in lab settings lead to lower ecological validity

compared to field studies. In our analysis, the first author,
who conducted the interviews, built the codebook iteratively
after discussing interesting concepts from interviews with the
other authors. Given that the first author might have missed
concepts that arose during the interview that a second initial
coder might have caught, the set of concepts described in
this paper might not be exhaustive. However, with the final
codebook, the second and third author codings were used to
check for inter-coder reliability, and based on the final coding
and codebook, all coders discussed possible themes such as
deployment strategies and roadblocks. Last, we do not claim
generalizability to the overall population of Web developers.
We reached saturation with respect to high-level roadblocks
participants encountered for the given Web application. How-
ever, we do not claim completeness with regard to low-level
misconceptions that may be influenced by educational level or
cultural background. Seven participants have an IT Security
background, suggesting our sample is more educated than
the general Web developer population. Thus, we position our
results as a lower bound for problems that occur during the
deployment of Trusted Types.

6 Conclusion

Our work presents the first qualitative study involving 13 real-
world Web developers to evaluate the usability of Trusted
Types deployment. With our qualitative interview study, and
especially the coding task, we were able to uncover important
roadblocks to Trusted Types deployment and the strategies
that lead to successful sanitizers. Based on those, we elaborate
on improvement suggestions for the mechanism so that we
can ease the deployment of Trusted Types for developers.
As the quality of the available information sources was one
of the major problems that developers faced or mentioned
during the study, we as a community need to work on better-
quality information sources that need to contain examples and
detailed explanations. In addition to that, technical issues like
the inheritance of Trusted Types to same-origin iframes need
to be fixed to ease the deployment of the mechanism.

Acknowledgments

We want to thank the reviewers for their feedback regarding
our paper’s presentation and all our participants for their time
and insights that ultimately made this work possible.

References

[1] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L.
Mazurek, and C. Stransky. Comparing the usability of
cryptographic apis. In S&P, 2017.

[2] A. Bangor, P. T. Kortum, and J. T. Miller. An empirical

evaluation of the system usability scale. International
Journal of Human–Computer Interaction, 2008.

[3] A. Barth. RFC 6454: The Web Origin Concept. Online
at ietf.org, 2011.

[4] F. Braun. Mozilla Standards Positions. Issue No. 20
(Trusted Types). GitHub.com. Online at github.com,
2023.

[5] F. Braun, M. Heiderich, and D. Vogelheim. HTML
Sanitizer API. W3C Draft. Online at wicg.github.io,
2022.

[6] V. Braun and V. Clarke. Using thematic analysis in
psychology. Qualitative research in psychology, 2006.

[7] J. Brooke et al. SUS: A ’Quick and Dirty’ Usability
Scale. Usability Evaluation in Industry, 1996.

[8] A. G. B.V. Amberscript - Data Security & Privacy.
Online at amberscript.com, 2022.

[9] S. Calzavara, A. Rabitti, and M. Bugliesi. Content Secu-
rity Problems?: Evaluating the effectiveness of Content
Security Policy in the Wild. In CCS, 2016.

[10] Can I use. Can I use trustedTypes API? Online at
caniuse.com, 2022.

[11] CISPA - GIT. Full Replication Package. Online at
github.com, 2023.

[12] R. Croft, Y. Xie, M. Zahedi, M. A. Babar, and C. Treude.
An empirical study of developers’ discussions about
security challenges of different programming languages.
Empirical Software Engineering, 2022.

[13] Cure53. DOMPurify. Online at github.com, 2022.

[14] Django Software Foundation. Security in Django. On-
line at djangoproject.com, 2017.

[15] X. Dong, M. Tran, Z. Liang, and X. Jiang. Adsentry:
comprehensive and flexible confinement of javascript-
based advertisements. In ACSAC, 2011.

[16] M. W. et al. CfC to publish as an FPWD. Issue No. 342.
GitHub.com. Online at github.com, 2018.

[17] A. Fass, M. Backes, and B. Stock. Hidenoseek: Cam-
ouflaging malicious javascript in benign asts. In CCS,
2019.

[18] Google. Puppeteer. Online at github.com, 2022.

[19] B. Hayak. Same Origin Method Execution (SOME).
Online at benhayak.com, 2015.

[20] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk. Scriptless Attacks: Stealing the Pie Without
Touching the Sill. In CCS, 2012.

[21] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and
E. Z. Yang. mXSS Attacks: Attacking well-secured
Web-Applications by using innerHTML Mutations. In
CCS, 2013.

[22] I. Ion, N. Sachdeva, P. Kumaraguru, and S. Čapkun.
Home is safer than the cloud! privacy concerns for con-
sumer cloud storage. In SOUPS, 2011.

[23] M. Jakobsson, Z. Ramzan, and S. Stamm. JavaScript
Breaks Free. Online at psu.edu, 2007.

[24] R. B. Johnson and L. Christensen. Educational research:
Quantitative, qualitative, and mixed approaches. Sage
publications, 2019.

[25] R. Kang, L. Dabbish, N. Fruchter, and S. Kiesler. “my
data just goes everywhere:” user mental models of the
internet and implications for privacy and security. In
SOUPS, 2015.

[26] Z. Kang, S. Li, and Y. Cao. Probe the proto: Measuring
client-side prototype pollution vulnerabilities of one
million real-world websites. In NDSS, 2022.

[27] C. Kern. Preventing Security Bugs through Software
Design. OWASP AppSec California, 2016.

[28] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic.
Noxes: A Client-Side Solution for Mitigating Cross-Site
Scripting Attacks. In SAC, 2006.

[29] A. Klein. DOM Based Cross Site Scripting or XSS of
the Third Kind. Online at webappsec.org, 2005.

[30] D. Klein, T. Barber, S. Bensalim, B. Stock, and M. Johns.
Hand Sanitizers in the Wild: A Large-scale Study of
Custom JavaScript Sanitizer Functions. In EuroS&P,
2022.

[31] K. Kotowicz. Prevent DOM-based cross-site scripting
vulnerabilities with Trusted Types. Online at web.dev,
2020.

[32] K. Kotowicz. Trusted Types - mid 2021 report. Online
at research.google, 2021.

[33] K. Kotowicz and M. West. Trusted Types. W3C Stan-
dard. Online at w3c.github.io, 2021.

[34] K. Krippendorff. Content analysis: An introduction to
its methodology. Sage, London, 2004.

[35] K. Krombholz, W. Mayer, M. Schmiedecker, and
E. Weippl. "I Have No Idea What I’m Doing"-On the
Usability of Deploying HTTPS. In USENIX Security,
2017.

https://www.ietf.org/rfc/rfc6454.txt
https://github.com/mozilla/standards-positions/issues/20#issuecomment-1853427823
https://wicg.github.io/sanitizer-api/
https://www.amberscript.com/en/data-security-and-privacy/
https://caniuse.com/mdn-api_trustedtypes
https://github.com/cispa/trust-me-if-you-can
https://github.com/cure53/DOMPurify
https://docs.djangoproject.com/en/4.0/topics/security/
https://github.com/w3c/trusted-types/issues/342#issuecomment-863151102
https://github.com/puppeteer/puppeteer
http://www.benhayak.com/2015/06/same-origin-method-execution-some.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3195&rep=rep1&type=pdf
http://www.webappsec.org/projects/articles/071105.shtml
https://web.dev/trusted-types/#use-a-default-policy
https://research.google/pubs/trusted-types-mid-2021-report/
https://w3c.github.io/webappsec-trusted-types/dist/spec/

[36] K. Krombholz, K. Busse, K. Pfeffer, M. Smith, and
E. von Zezschwitz. "If HTTPS Were Secure, I Wouldn’t
Need 2FA"-End User and Administrator Mental Models
of HTTPS. In S&P, 2019.

[37] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In
ICSE, 2006.

[38] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczyński, and W. Joosen. Tranco: A research-
oriented top sites ranking hardened against manipulation.
In NDSS, 2019.

[39] S. Lekies, B. Stock, and M. Johns. 25 Million Flows
Later - Large-scale Detection of DOM-based XSS. In
CCS, 2013.

[40] S. Lekies, K. Kotowicz, S. Groß, E. A. Vela Nava, and
M. Johns. Code-reuse attacks for the web: Breaking
cross-site scripting mitigations via script gadgets. In
CCS, 2017.

[41] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia.
Riding out DOMsday: Toward Detecting and Preventing
DOM Cross-Site Scripting. In NDSS, 2018.

[42] K. Mindermann, P. Keck, and S. Wagner. How usable
are rust cryptography apis? In QRS, 2018.

[43] M. Musch, M. Steffens, S. Roth, B. Stock, and M. Johns.
ScriptProtect: Mitigating unsafe third-party javascript
practices. In AsiaCCS, 07 2019.

[44] OWASP. OWASP Top 10 Web Application Security
Risks. Online at owasp.org, 2017.

[45] N. Patnaik, J. Hallett, and A. Rashid. Usability smells:
An analysis of developers’ struggle with crypto libraries.
In SOUPS, 2019.

[46] R. Perris. Avoiding XSS in React is Still Hard. Online
at medium.com, 2018.

[47] P. Ringnalda. Getting around IE’s MIME type mangling.
philringnalda.com, 2004.

[48] D. Ross. Happy 10th Birthday Cross-Site Scripting.
Online at microsoft.com, 2009.

[49] S. Roth, M. Backes, and B. Stock. Assessing the Impact
of Script Gadgets on CSP at scale. In AsiaCCS, 2020.

[50] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and
B. Stock. Complex Decurity Policy? A longitudinal
analysis of deployed Content Security Policies. In NDSS,
2020.

[51] S. Roth, L. Gröber, M. Backes, K. Krombholz, and
B. Stock. 12 Angry Developers - A Qualitative Study
on Developers’ Struggles with CSP. In CCS, 2021.

[52] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX:
Systematic Discovery of Client-side Validation Vulnera-
bilities in Rich Web Applications. In NDSS, 2010.

[53] Sebastian Roth. Recruitment Flyer. Online at twit-
ter.com, 2022.

[54] J. Smith, L. N. Q. Do, and E. Murphy-Hill. Why can’t
johnny fix vulnerabilities: A usability evaluation of
static analysis tools for security. In SOUPS, 2020.

[55] S. Son and V. Shmatikov. The postman always rings
twice: Attacking and defending postmessage in html5
websites. In NDSS, 2013.

[56] M. Steffens and B. Stock. PMForce: Systematically
Analyzing postMessage Handlers at Scale. In CCS,
2020.

[57] M. Steffens, C. Rossow, M. Johns, and B. Stock. Don’t
Trust The Locals: Investigating the Prevalence of Per-
sistent Client-Side Cross-Site Scripting in the Wild. In
NDSS, 2019.

[58] M. Steffens, M. Musch, M. Johns, and B. Stock. Who’s
Hosting the Block Party? Studying Third-Party Block-
age of CSP and SRI. In NDSS, 2021.

[59] B. Stock, S. Pfistner, B. Kaiser, S. Lekies, and M. Johns.
From Facepalm to Brain Bender: Exploring Client-Side
Cross-Site Scripting. In CCS, 2015.

[60] A. Strauss and J. M. Corbin. Grounded theory in prac-
tice. Sage, London, 1997.

[61] C. Tiefenau, E. von Zezschwitz, M. Häring, K. Kromb-
holz, and M. Smith. A usability evaluation of let’s en-
crypt and certbot: usable security done right. In CCS,
2019.

[62] Tranco Website. Tranco List from 26 June 2022. Online
at tranco-list.eu, 2022.

[63] Twitter Community. Reasons to move from same-origin
iframes to third-party iframes? Online @ devcommu-
nity.x.com, 2022.

[64] L. Veronese, B. Farinier, P. Bernardo, M. Tempesta,
M. Squarcina, and M. Maffei. Webspec: Towards
machine-checked analysis of browser security mech-
anisms. In S&P, 2023.

[65] P. Wang, B. A. Gudmundsson, and K. Kotowicz. Adopt-
ing Trusted Types in Production Web Frameworks
to Prevent DOM-Based Cross-Site Scripting: A Case
Study. In EuroS&PW, 2021.

https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS)
https://medium.com/javascript-security/avoiding-xss-in-react-is-still-hard-d2b5c7ad9412
http://weblog.philringnalda.com/2004/04/06/getting-around-ies-mime-type-mangling
https://blogs.msdn.microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting/
https://twitter.com/s3br0th/status/1540303318060339200
https://twitter.com/s3br0th/status/1540303318060339200
https://tranco-list.eu/list/JX83Y
https://devcommunity.x.com/t/reasons-to-move-from-same-origin-iframes-to-third-party-iframes/179321
https://devcommunity.x.com/t/reasons-to-move-from-same-origin-iframes-to-third-party-iframes/179321

[66] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc.
CSP is dead, long live CSP! On the insecurity of
whitelists and the future of content security policy. In
CCS, 2016.

[67] M. Weissbacher, T. Lauinger, and W. Robertson. Why
is CSP failing? Trends and challenges in CSP adoption.
In RAID, 2014.

[68] M. West. CSP Level 3. W3C Standard. Online at w3.org,
2021.

[69] S. Zhu, Z. Zhang, B. Qin, A. Xiong, and L. Song. Learn-
ing and programming challenges of rust: A mixed-
methods study. In ICSE, 2022.

A Interview Guideline

Introduction:
Hi $Name,
I’m Sebastian, first of all thank you for participating in our Interview such
that we can improve the security and usability of Trusted Types. Also, please
note that we want to find general strategies and roadblocks of Trusted Types,
so we are not evaluating the correctness of your answers we only want to
improve the security mechanism. We first start with few questions regarding
your working environment and some Web topics. Those will take around 15
minutes, and if you don’t want to answer a question, feel free to say it, and
we’ll skip it. Afterwards, we will do the coding task, where you are asked to
implement Trusted Types sanitizers for a small Web application. We can offer
you the App as a Docker, you can run the code directly on your machine, or
you can remote control one of our machines. Which would be the option you
prefer? Any other questions before we start?

General Questions:
• In your company, what is the specific area that you cover with your

work? If you are in a team, what is your specific task in this team?

• Are you considering yourself a Web developer? If yes, since: ...

• Do you have an IT-Security background? If yes, please specify: ...

• Was Web Security part of your education? If yes, briefly outline the
basic content / topics covered?

• How familiar are you with XSS? How did you learn about it?

Web Security Questions:
• How would you explain Cross-Side Scripting?

– How does the vulnerability happen?

– Client- vs. Server-side XSS?

– Client-side execution sinks?

• What kind of Web security mechanisms come into your mind when
you want to defend against XSS?

• In preparation for this study, you were asked to inform yourself about
Trusted Types. Did you already know about this mechanism?

– How have you found/searched for information?

– Which Information Sources did you find?

– How would you rate the quality of those sources?

• After reading the information sources: How would you explain Trusted
Types?

– How is it enforced?

– How does it defend against XSS?

• What is you impression of TT at this point? Any concerns?

• Would you use Trusted Types for one of your Web applications?

Coding Task / Knowledge Validation:
Your task is to create Trusted Types sanitizers that defend the given Web
application against client-side XSS. The application itself is written in python
using the Django Framework. However, you do not need to know any details
about Django as you only need to write the sanitizer in JavaScript. During
the coding task, it would be awesome if you could think aloud about your
decisions such that we can learn from them. Also, it would be nice if you
could share your screen such that we can see the roadblocks that you face
during deployment. Notably, you can develop just like you wish, so feel free
to use any online resources, textbooks, and so on. So let’s have a look into
the source code...
As said, we are using the Python Django Framework. In app/templates/*
are the HTML files that are used as templates for rendering the content.
In app/views.py you can find the logic / implementation behind every
endpoint. In app/static/* all static files such as JavaScripts that are used
by the application are located. In app/static/js/trusted-types.js we
already have boilerplate code for the sanitizers. Explain the TT code and ask
"While I’m preparing the application/the docker is building think about this
code and if you would say this code already prevents some XSS attacks?.
Before starting, let’s quickly take a look at the Front end.

Debriefing:
• What is you impression of TT after working with it?

• Do you think TTs are a feasible defense against XSS?

• What would have to change for you to use the mechanism? / What
would an ideal mechanism look like for you?

Ending: Send the SUS, and the voucher form.

B Participant Demographics

Part. Age Gen. CC Edu. Occupation

P1 (pre) 20-30 M DE - Student
P2 (pre) 20-30 M DE - Student
P3 20-30 M DE Master Security Operator
P4 20-30 M DE Bachelor Research Assistent
P5 20-30 M DE Bachelor Security Engineer
P6 20-30 M UK Master Software Engineer
P7 40-50 M US Bachelor Security Engineer
P8 20-30 M DE Bachelor Research Assistent
P9 20-30 M PK Bachelor Software Engineer
P10 20-30 M DE Bachelor Master Student
P11 30-40 M DE Bachelor Software Developer
P12 20-30 M DE Trainee Software Developer
P13 20-30 M DE Bachelor Freelance Developer
P14 20-30 M DE Master Web-Developer
P15 20-30 F DE Master Web-Developer

Table 3: Overview of the participants demographics.

C Additional Listings and Table

https://www.w3.org/TR/CSP3/

April 2010 Stamm et al. presented their work on a novel XSS mitigation, the Content Security Policy (CSP), at TheWebConf

November 2011 CSP becomes a First Public Working Draft by the WorldWideWeb Consortium (W3C).

since 2014 The research community extensively evaluated CSP and it became clear that for certain types of XSS, especially
client-side XSS, it is not working.

15th Sep. 2017 Google engineers proposed Trusted Types as an addition to CSP to defend against client-side XSS.

19th May 2020 First full support for Trusted Types in the Chromium Engine.

06th Sep. 2021 Trusted Types support added to AngularJS by Wang et al. in the process of their IEEE EuroS&P Workshop paper.

17th Jun. 2021 Mozilla called a “Formal Objection” to TrustedTypes becoming a technical specification in the W3C.

06th Jul. 2021 Google published a Report on Google’s success in deploying Trusted Types on 130 of their services.

January 2022 Start with the design of the study followed by pre-tests and pre-studies for this work.

July 2022 The first interview with a non-pre-study participant has been conducted.

April 2023 The final interview has been conducted followed by a coding / evaluation process.

13th Dec. 2023 Mozilla change their standards position to positive such that Trusted Types can become standardized.

August 2024 This work is presented and published at the USENIX Security Symposium 2024.

Table 4: Timeline of Trusted Types (incl. this work)

// generate trusted types using dompurify
var trustedHTML = DOMPurify.sanitze(dirtyHTML,

{RETURN_TRUSTED_TYPE: true});↪→

var trustedScript = DOMPurify.sanitze(dirtyScript,
{RETURN_TRUSTED_TYPE: true});↪→

var trustedScriptURL = DOMPurify.sanitze(dirtyScriptURL,
{RETURN_TRUSTED_TYPE: true});↪→

// assign trusted types to DOM elements
document.getElementById('trustedHTML') .innerHTML =

trustedHTML;↪→

document.getElementById('trustedScript') .innerHTML =
trustedScript;↪→

document.getElementById('trustedScriptURL') .innerHTML =
trustedScriptURL;↪→

// assign trusted types to attributes
document.getElementById('trustedScriptURL') .src =

trustedScriptURL;↪→

document.getElementById('trustedScriptURL') .href =
trustedScriptURL;↪→

document.getElementById('trustedScriptURL') .onclick =
trustedScriptURL;↪→

Listing 2: GitHub Copilot output

let TTCode = `(${addTTFunc.toString()})();`;

let ogFunc = Node.prototype['appendChild'];
Node.prototype['appendChild'] = function () {

let el = ogFunc.apply(this, arguments);
if (el.tagName && el.tagName.toLowerCase() ===

"iframe" && el.contentWindow) {↪→

let trusted = window.defaultPolicy
.createScript(TTCode);↪→

el.contentWindow.eval(trusted);
}
return el;

};

Listing 3: Example hook for appendChild

let trustedCallers = [/* allowlist */]

let createScript = function (rawJS) {
let trustedCaller =

arguments.callee.caller.toString();↪→

if (trustedCallers.indexOf(trustedCaller) === -1)
return null;

return rawJS;
}

Listing 4: Sample solution for the createScript sanitizer

	Introduction
	Background & Related Work
	Cross-Site Scripting
	Server-Side Cross-Site Scripting
	Client-Side Cross-Site Scripting

	Content Security Policy
	Trusted Types
	Qualitative Methods

	Methodology
	Recruitment and Participants
	Screening Survey
	Interview
	Coding Task
	Web Application

	Pre-Study
	Data Analysis
	Ethical Considerations

	Results
	Participant Demographics & Background
	Strategies & Roadblocks for Trusted Types
	Client- vs. Server-side XSS
	Perceptions on XSS and Trusted Types
	Usability Perspective

	Discussion
	Sourceless iframe Problem
	Standardized & Customizable Sanitization
	Sanitizing JavaScript
	Impact of Information Sources
	Implications for the Trusted Types Design
	Recommendations
	For Browser Vendors
	For Developers
	For the Community

	Limitations

	Conclusion
	Interview Guideline
	Participant Demographics
	Additional Listings and Table

