
Hand Sanitizers in the Wild:
A Large-scale Study of Custom JavaScript Sanitizer Functions

David Klein∗, Thomas Barber†, Souphiane Bensalim†, Ben Stock‡ and Martin Johns∗
∗Technische Universität Braunschweig {david.klein,m.johns}@tu-braunschweig.de

†SAP Security Research {thomas.barber,souphiane.bensalim}@sap.com
‡CISPA Helmholtz Center for Information Security stock@cispa.de

Abstract—Despite the considerable amounts of resources
invested into securing the Web, Cross-Site Scripting (XSS) is
still widespread. This is especially true for Client-Side XSS as,
unlike server-side application frameworks, Web browsers do
not ship with standard protection routines, so-called sanitizers.
Web developers, therefore, have to either resort to third-party
libraries or write their own sanitizers to stop XSS in its tracks.
Such custom sanitizer routines – dubbed hand sanitizers in
the following – are notoriously difficult to implement securely.

In this paper, we present a technique to automatically
detect, extract, analyze, and validate JavaScript sanitizer
functions using a combination of taint tracking and symbolic
string analysis. While existing work evaluates server-side
sanitizers using a small number of applications, we present
the first large-scale study of client-side JavaScript sanitizers.
Of the most popular 20,000 websites, our method detects
705 unique sanitizers across 1,415 domains, of which 12.5%

are insecure. Of the vulnerable sanitizers, we were able to
automatically generate circumventing exploits for 51.3%

of them, highlighting the dangers of manual sanitization
attempts. Interestingly, vulnerable sanitizers are present
across the entire range of website rankings considered, and
we find that most sanitizers are not generic enough to thwart
XSS if used in just a slightly different context.

Finally, we explore the origins of vulnerable sanitizers to
motivate adopting a standardized sanitization API available
directly in the browser.

1. Introduction

The Web is arguably the most important application
delivery platform today. New applications are frequently
launched first, or even exclusively, as Web applications.
Browsers and the JavaScript language have rapidly gained
new features to aid this growth. On the other hand, breaking
changes (e.g., removing functionality) are avoided by all
major browsers to keep compatibility with old websites
intact. This means that the underlying development model
has not changed since the advent of JavaScript.

To develop dynamic content on the client, developers
have to generate markup with JavaScript which is then
added to the DOM. This mix of (static) markup and
code is a frequent cause of issues. One of the longest-
standing security issues for Web applications is cross-
site scripting (XSS). XSS occurs when unfiltered and
unsanitized attacker-controllable input is interpreted as
code, either because it is insecurely intermixed with HTML
or JavaScript. Despite considerable attention from both the

research community as well as browser and framework
vendors, it is still highly relevant today. In fact, XSS has
consistently ranked as one of the most critical security risks
for Web applications [29, 30, 31]. The increased usage of
JavaScript to provide web application logic has also led to
a rise in client-side XSS [19] vulnerabilities [23, 25, 37],
in some cases affecting large technology companies such
as Google [26] and Facebook [21].

To protect against this class of errors, developers
have to filter or sanitize input originating from danger-
ous sources. Unfortunately, as browsers do not provide
standard routines, many developers attempt sanitization
through unfit means such as regular expressions. These are
unreliable, not only due to the complexity of the HTML5
language itself but also aggravated by the fact that all
major browsers use very lenient HTML parsers. This
allows even malformed HTML code to render properly,
aiding usability but also hindering sanitization efforts and
opening the door to abuse from attackers. This is not a new
problem; browsers used to ship with regular expression-
based XSS protection mechanisms, which were shown to
be unreliable [8] and consequently removed. This fact has
even reached developer folklore, e.g., the most popular
StackOverflow answer on how to match XHTML with
regular expressions states that “using regex to parse HTML
has doomed humanity to an eternity of dread torture and
security holes” [2].

The few notable examples of third-party sanitization
libraries, such as Google Closure and DOMPurify, are
often used only by security-aware sites, which tend not
to construct dangerous flows in the first place. Further,
while the Content Security Policy (CSP) is claimed to
be “one of the most promising countermeasures against
XSS” [40], numerous studies have shown that policies are
often not deployed at all or are trivially insecure in 95% of
all cases [10, 32, 40, 42]. Hence, hand-written sanitizers
are likely here to stay.

In this paper we present a technique to automatically
detect, extract, analyze, and validate client-side JavaScript
sanitizer functions on a large scale and apply this to the
analysis of real-world sanitizers across 20,000 popular sites.
To summarize, our main contributions are as follows:

• We develop a mechanism to automatically detect
sanitizing functions in real-world JavaScript based
on operation traces in collected taint data.

• Based on these operation traces, we present SemAt-
tack, an automaton-based framework which can
assess sanitizer security and automatically generate

payloads to bypass insecure sanitizers.
• We present, to our knowledge, the first large-

scale assessment of JavaScript sanitizer usage and
effectiveness in the 20,000 most popular websites.

• Through our empirical analysis, we also highlight
common mistakes JavaScript developers make and
insights on how they approach such tasks. In light
of these findings, we motivate the need for browser-
supported sanitization routines.

The accompanying material for this work is available
at https://github.com/ias-tubs/hand sanitizer. Release of
the dataset collected during this study is not planned as it
would reveal publicly exploitable vulnerabilities which
have not necessarily been patched by website owners.
Instead, we made a sample dataset (e.g., as described
in Section 4.3) illustrating our method available at the
aforementioned URL.

2. Technical Background and Related Work

In this section, we present the required technical back-
ground for this work, namely client-side XSS vulnerabili-
ties, input sanitization, and the OWASP recommendations
on how to encode input to prevent client-side XSS. We
also highlight related work throughout this section.

2.1. Client-Side XSS

By default, JavaScript code running in a browser is
bound to allow access only to resources from the same
origin (the tuple of protocol, host, and port). Hence, an
attacker cannot simply build a page that loads a target
page in a frame and directly access its content through
JavaScript. To achieve this, the attacker’s code has to run
in the same origin as that of the target page. The class
of attack in which the adversary abuses vulnerabilities
to inject their code into another page is called Cross-
Site Scripting (XSS) and has been known since the early
2000s [11]. The goal of an attacker is to inject JavaScript
code (either directly or within HTML markup) to execute
some nefarious action, such as stealing cookies or phishing
credentials. One specific subclass of XSS is Client-Side
Cross-Site Scripting (referred to as DOM-based XSS when
it was first discovered in 2005 [19]). Here, the client-side
notion refers to the fact that the insecurity lies within
client-side JavaScript rather than server-side code.

Client-side XSS flaws can occur when attacker-
controllable data is used within dangerous sink functions,
such as document.write or innerHTML (HTML
sinks) or eval (JavaScript sink). Such data can originate
from different sources, such as parts of the URL or the
referrer (also referred to as reflected client-side XSS),
from client-side storage such as cookies or LocalStorage
(persistent client-side XSS), or through PostMessages. Pre-
vious work has thoroughly investigated the prevalence of
reflected client-side XSS [23, 25, 37], persistent XSS [36],
and postMessage-caused XSS [34, 35]. Notably, previous
work has only provided anecdotal evidence for improper
sanitization [37] or insecure origin checks [34, 35].

1 // vulnerable, as attacker input is used
unfiltered↪→

2 document.write('<img
src="https://ad.com/?referrer=' +
attacker_controlled + '">');

↪→

↪→

3

4 // not-vulnerable, as encodeURI encodes " as
%22↪→

5 document.write('<img
src="https://ad.com/?referrer=' +
encodeURI(attacker_controlled) + '">');

↪→

↪→

6

7 // vulnerable, as encodeURI does not encode '
8 document.write("<img

src='https://ad.com/?referrer=" +
encodeURI(attacker_controlled) + "'>");

↪→

↪→

Figure 1: Examples of unfiltered flow, correct sanitization,
and incorrect sanitization

2.2. Input Sanitization

Given the aforementioned model of untrustworthy data,
which ends up in a dangerous sink, one potential counter-
measure is to deploy sanitization. The basic idea of saniti-
zation is to remove or encode dangerous characters before
the data hits the sink. The definition of dangerous depends
on the type of sink (e.g., > and < are problematic in HTML
sinks, but not in JavaScript sinks) as well as the exact
context in which data is used. Figure 1 shows an example of
these intricacies. The code in line 2 is clearly vulnerable, as
the attacker has full control over parts of the string written
to document.write and can simply inject an arbitrary
payload, e.g., "><script>alert(1)</script>.
This allows the attacker to close the img tag and add a new
script tag with their payload. To fix this issue, the developer
might use the built-in function encodeURI, as shown
in line 5. This function automatically encodes the double
quotes and HTML brackets (<>), thereby stopping the at-
tacker from breaking out of the img tag. However, looking
at line 8, encodeURI must not be used when the attacker-
controlled data is within a single-quoted attribute. Since the
function does not automatically encode single quotes, the
attacker can inject ’/onload=’alert(1)’/foo=’.
This allows them to break out of the attribute, add the
event handlers for both successful and failed loading of the
image, and consume the remaining single quote to avoid
HTML parsing errors. Note that the / is a replacement
for the space, which would be automatically encoded by
encodeURI. However, HTML parsers allow / between
attributes of a tag [43] and treat it as whitespace.

This example highlights that sanitization is dependent
on both the type of sink as well as the exact context in
which attacker-controlled data may be used. And while two
code snippets may look almost the same (lines 5 and 8),
choosing the same encoding function yields two different
outcomes. In a similar vein, developers may misunderstand
the details of other APIs, such as JavaScript’s replace
function. This, when called with a string or a regex without
the global modifier, only replaces the first occurrence of a
character in a string. Therefore, great care must be taken
when choosing a sanitizing function for a particular data
flow.

Previous research has already investigated such san-
itization routines on the server. Balzarotti et al. [7] au-

2

https://github.com/ias-tubs/hand_sanitizer

tomatically detected sanitization routines in PHP code
and tested their efficacy against a large test suite of
XSS payloads collected by the authors. This requires
the application under examination to be open source and
only detects issues if one of their test cases matches
the problem in the routine. It is therefore only able to
detect issues that have occurred previously elsewhere.
Similarly, Dahse and Holz [12] studied the correct usage
of sanitization routines on 25 popular PHP applications
based on secure data flows. Hooimeijer et al. [17] manually
translate sanitizing routines into the BEK language. This
representation can then be used to prove properties of
the modeled function, such as idempotence or security
guarantees. However, their approach relied on the manual
translation of sanitizers and therefore does not scale to
real-world Web JavaScript. Argyros et al. [6] take a
black box approach to infer sanitizers as symbolic finite
transducers. In addition, they convert their models into the
BEK language to compute equivalence and idempotence
checks, and perform an empirical study using 7 server-
side applications. The SCRIPTGARD framework [33]
uses positive tainting to detect the correctness of sanitizer
placement and provide automated runtime sanitization.
Their empirical study was performed on a single .NET web
application. Weinberger et al. [41] create a web browser
model to study sanitization of web frameworks in 8 PHP
applications using a combination of manual and automated
exploration.

Symbolic analysis of string functions using determin-
istic finite automata has been studied by Yu et al. [44]
and applied to evaluate the correctness of input validation
functions (e.g., for E-mail inputs) in client-side JavaScript
on 13 websites [4]. Further studies [5] extend this technique
to model the effectiveness of sanitizer functions and, where
necessary, use differential repair to provide fixes to client
and server-side code automatically. Yu et al. [45] use
a similar approach to generate sanitizer functions if a
vulnerability is discovered automatically. Both of these
studies validated their techniques using dynamic slicing to
extract sanitization functions from 5 PHP applications.

Orthogonally to academic research, browser vendors
and standards bodies have invested in deploying improved
client-side filtering mechanisms. On the one hand, the
recently proposed Trusted Types standard [14] ensures that
data flows cannot enter a sink without passing through
a sanitizer function. This way, developers cannot forget
to sanitize their data, as sink access with pure strings
(instead of trusted types) is disabled. Furthermore, the
proposed Sanitizer API [39] aims at providing an easy-to-
use interface for developers to sanitize their data. This is
motivated by the fact that the most advanced sanitization
libraries, such as DOMPurify [16], rely on manual parsing
instead of browser built-in DOM parsing. This leaves room
for inconsistencies between DOMPurify and actual browser
behavior, opening DOMPurify up for possible bypasses.
Overall, while DOMPurify provides a strong basis for
proper sanitization, developers lack built-in capabilities to
sanitize strings, leading them to build their own sanitizers
instead.

Context OWASP Recommendation [28]

HTML <>’"& except HTML encoded chars
HTML Attr. The quote characters (" and ’) as well as characters

usable to break out of unquoted attribute values (in-
cluding: [space] % * + , - / ; < = > ˆ
and |), properties and event handlers

JavaScript non-alphanumeric except ,._ whitespace or
hex/unicode encoded

Table 1: Characters to be encoded per sink context

2.3. OWASP Recommendations

Generally speaking, there are two approaches to san-
itization: Firstly, a validator (or filter), will only allow
values to pass through if they are deemed safe for the
given context. Secondly, a mutating sanitizer will remove
or replace potentially harmful fragments of the input. In
this work, we focus on mutating sanitizers, as these can
be abstracted based on the operations that are conducted
on an input. Secure sanitizers can either be generic for a
sink class (HTML or JavaScript) or specific for the context
they are used in. For a generic sanitizer to be secure, it
needs to mutate all characters which are dangerous in the
sink context. Table 1 highlights such dangerous characters,
showing the OWASP recommendation for which characters
should be considered dangerous (and hence, must be
encoded properly or removed altogether) depending on the
injection context.

When an attacker-controllable piece of data is used
within a sink such as document.write or inner-
HTML, we refer to this as an HTML context, as these
APIs expect HTML to passed to them. Here, we need to
distinguish between two cases: 1) the attacker-controlled
data is used within a single- or double-quoted attribute,
and 2) the data is used outside of such attributes. The
latter case is shown in the first line of the table. Here, the
OWASP recommendations state that a generic sanitizer
should remove >, <, double and single quotes, as well
as the & (except for when it is used to encoded already
encoded characters, e.g., < for <). For the former case,
the OWASP recommendations go even further to state
that any non-alphanumeric characters should be encoded,
except those that are used for encoding (e.g., the & sign)
if used as part of existing HTML entity encoding.
If attacker-controlled data is used within a JavaScript con-
text, e.g., a call to eval, the OWASP guide recommends
that all non-alphanumeric characters are escaped, with
a handful of exceptions such as the comma, period, or
underscore.

Note that the OWASP recommendation – especially for
the JavaScript context – is very aggressive: it is perfectly
possible to construct a secure sanitizer by encoding only
a subset of the recommended characters depending on the
injection context. This, however, opens the door to the
sanitizer being vulnerable if there are minor changes in
the surrounding code.

3. Research Questions and Methodology

Based on the explanation in Section 2, it becomes clear
that sanitization is very context-specific and difficult to

3

Taint Crawl &
Exploit Generation

Validation Crawl &
Trace Collection

Sanitizer Detection &
Dep. Graph Generation SemAttack

Tranco Exploit
Cand.

Traces Dep.
Graphs

Bypass
Validation

Figure 2: Overview of our sanitizer evaluation methodology.

get right. For sinks that can lead to direct code execution
(i.e., HTML and JavaScript sinks), there is no standardized
sanitization functionality available in the browser. Thus,
developers either have to write their own by hand (which
we refer to as hand sanitizers) or use external sanitization
libraries (e.g., DOMPurify). The main goal of our work,
therefore, is to understand the usage and security of
JavaScript sanitizers on the client-side Web. To this end,
we propose two main research questions, which we aim
to answer in the following.

RQ1: How many data flows between URL sources
and execution sinks use some type of sanitization routine?
While prior work has focussed only on finding exploitable
data flows, we are rather interested in shining light on
those cases which could not be directly exploited because
of sanitization.

RQ2: What fraction of sanitizers provide sufficient
protection against XSS exploits for the specific sink and
injection context in which they are found? While under-
standing the generality of a sanitizer is meaningful to assess
its applicability to other data flows, we aim to understand
if a chosen sanitizer is sufficient for the exact injection
context. For example, while a generic HTML sanitizer
needs to encode (at least) <>, it suffices to escape single
quotes when the injection is within a single-quoted attribute,
thereby ensuring the attacker’s payload cannot break out
of the attribute.

In order to address these questions, we require a
technique to automatically detect, analyze, and validate
client-side JavaScript sanitizer functions on a large scale.
While prior work has provided anecdotal evidence for
the existence of insecure sanitization in client-side Web
applications [37], previous studies tend to focus on server-
side sanitization [5, 6, 7, 17, 41], rely on manual explo-
ration or translation [6, 17, 41], and perform empirical
studies with a small number of hand-picked applica-
tions [5, 6, 7, 17, 41, 44]. In fact, Weinberger et al.
[41] explicitly exclude client-side XSS sanitization from
their studies, stating that “protection for this class of XSS
requires further research”.

3.1. System Overview

We present our methodology used to answer the above
research questions in the rest of this section, as summarized
in Figure 2. To start, we collect invocations of dangerous
sinks with data originating from URL sources using taint
tracking as described in Section 3.2. Based on these taint
flows, we generate exploit candidates as described in
Section 3.3. On the one hand, this allows us to detect
exploitable flaws, but more importantly, it ensures that
if sanitizers with conditionals are present, as more of
their code paths will be executed. In Section 3.4, we
extract traces of the manipulating operations conducted on
attacker-controllable data before it entered the respective
sinks. Based on this set of operations, we ascertain if
the data flow was sanitized, e.g., if the operations are

only concatenations, the flow is discarded from further
analysis. For the flows that are identified as sanitizers,
we then generate dependency graphs, which abstract the
functionality of the applied sanitizer. Finally, we pass the
graphs to SemAttack, our analysis framework, as described
in Section 3.5. Here, we evaluate whether or not the
sanitizer is secure, i.e., it protects the website against code
injection for the given injection context. We achieve this
by attempting to find a transformation of the initial exploit
payload that defeats the insecure sanitizer. Finally, for each
combination of data flow/potentially insecure sanitizer, we
build exploit URLs using the targeted payloads especially
crafted to circumvent the sanitizer in the given injection
context. We then validate these bypasses by visiting the
modified URLs to achieve code execution.

3.2. Taint Flow Detection

Taint tracking is a well-established technique for detect-
ing client-side XSS flaws [23, 25]. String data emanating
from user-controlled (and therefore also attacker-controlled)
sources are marked as tainted by a modified browser
engine. Typical examples of sources are location.*
and documentURI properties. Additional modifications
to the browser and JavaScript engines ensure that taint
information is correctly propagated during string opera-
tions, such as substr and replace. If a tainted string is
detected entering a sink function, the path between source
and sink is potentially vulnerable to client-side XSS.

“Foxhound”, the taint browser used for this study is
based on the open-source Web browser Firefox, version 80,
and tracks data flows from sources through both Spider-
Monkey, the JavaScript engine, as well as through Gecko,
the rendering engine, into sinks. In prior work, which
focused on the detection of XSS [23, 25, 36], only the
taint status of each character (i.e., the source and the
usage of built-in encoding functions) is stored. These
approaches, however, store insufficient information for
the purposes of our study. In order to extract information
about any underlying sanitization functions, we require
precise knowledge of all string transformations that occur
between source and sink. To this end, we follow the method
described by Stock et al. [37], whereby the internal string
representation is enhanced with a single pointer to a list of
taint ranges, with a null pointer indicating the string is
untainted. Each taint range stores a start and end character,
together with a linked list of taint operations we refer to
as the taint flow. The taint operations include information
about sources and sinks, both native and user-defined
function calls, together with their arguments and calling
context. A tainted string which enters a sink function is
denoted a finding and each finding consists of one or more
taint flows. Figure 3 shows an example of such a finding.
The name of the function in which the operation occurred
is given in parentheses behind each operation. We will
use this finding as a running example throughout the next
section. Additional function arguments, as well as location

4

- location.href (g1)
- concat (c1)
- innerHTML (c2)

- location.search (f1)
- replace(’<’, ’<’) (f2)
- replace(’>’, ’>’) (f2)
- concat (c1)
- innerHTML (c2)

L O T S O F C H A R S

First Range Second Range

Sanitizer

Figure 3: Example of a finding

information (i.e., where in the JavaScript source did this
call occur), are omitted for brevity if not necessary to
illustrate our methodology. The string “LOTSOFCHARS”
shown at the bottom enters the innerHTML sink. The
string consists of static data and tainted data, the latter
indicated by shaded boxes in Figure 3. As the two taint
flows are part of the same finding, their flows have to join
at one point (here, the concat call in c1 just before the
sink).

3.3. Exploit Generation

As discussed by prior work [23], the mere existence
of a tainted data flow does not imply an exploitable flaw,
which is why such flows require validation through a proof-
of-concept exploit. For our paper, the exploitability of a
flaw is not as relevant as for prior work, as we focus
on sanitizers. However, given our approach of abstracting
sanitizer functionality from the applied operations to a
tainted string, we aim to trigger as much of the sanitization
code as possible. This is motivated by the fact that some
operations may only occur if certain conditions are met.
Figure 4 shows an example for such a conditional sanitizer.
Here, the replace operation (line 4) is only conducted
if the regular expression (defined in line 2) matches, which
occurs when either < or > are in the untrusted input.
To achieve this coverage, we, therefore, generate exploit
candidates for each detected data flow.

The generation strategies are in line with prior work [9,
23, 36, 37], which is why we only briefly outline them
here and refer the reader to these works for a more detailed
discussion. In a nutshell, the exploit generator produces
an injection-context-specific breakOut sequence, a sink-
specific payload, and an injection-context-specific breakIn
sequence. As an example, the insecure flow in Figure 1
(line 2) occurs in a double-quoted attribute within an
img tag. Hence, to break out, we first close the attribute
with a double quote, followed by closing of the img tag
(">). Next, we generate a payload to trigger an alert box,
e.g., <script>alert(1)</script>. In the HTML
context, we do not need to generate a specific breakIn
sequence, as the HTML parser tolerates the "> suffix
(which is hard-coded after the injection point).

In addition, we generate an additional payload for
cases where the injection occurs in an attribute context
of an HTML element which allows execution of the
onload and onerror event handlers. In this case, we
construct a payload by first breaking out of the attribute
with a quote (either single or double, depending on the
context), setting the event handlers, and finally reentering

1

2 function sanitize(untrusted) {
3 let re = /[<>]/g;
4 if (re.test(untrusted)) {
5 return untrusted.replace(/</g,

'<').replace(/>/g, '>');↪→

6 }
7 return untrusted;
8 }

Figure 4: Example sanitizer with conditional statement.

an attribute. For example, for a double-quoted attribute, the
corresponding exploit would be: " onload=alert(1)
onerror=alert(1) foo=". This construction has the
advantage that it will not be blocked by sanitization
functions which remove <> characters. We also generate
payloads that use template literals (i.e., backticks) to
call the reporting function (e.g., alert‘1‘) in order to
circumvent sanitizers that filter brackets. The generated
exploit payloads are thus highly specific to the injection
context, i.e., without sanitization they should lead to code
execution while also triggering code of sanitizers if they
are indeed adequate (or at least attempt to sanitize data).

Based on the exploits generated for the findings derived
in the initial crawl, we now conduct a validation crawl in
which we attempt to validate the generated exploit URLs.
Note that this primarily serves to cover more paths in the
sanitizer code and not to reproduce findings of prior work.

Note that for our browser engine, we decided to
disable automatic encoding of the URL query and fragment.
Albeit this behavior is the default in modern browsers and
therefore mitigates exploitation of vulnerabilities, our focus
is on investigating intentional sanitization. Furthermore,
legacy browsers like Internet Explorer do not apply such
auto-encoding, meaning that developers must not rely on
implicit auto-encoding to “secure” their applications, as
this would leave legacy clients vulnerable.

3.4. Detection of Hand-Sanitizers

We analyze all findings from the validation crawl in the
detection phase as follows: In the first stage, we filter the
findings to ensure they originate from attacker-controlled
sources such as location.* or documentURI and
flow into sink functions which allow direct code execution,
such as innerHTML or document.write.

In order to extract sanitization functions, we first
reconstruct the call graph from the taint flow by deter-
mining which operations belong to the same functions
and in which order they are called. We then analyze
which operations in the call graph perform sanitization.
To determine this, we check whether the transformations
operate on potentially harmful characters and flag the
corresponding operations. Potentially harmful characters
are defined as characters that should be encoded according
to the OWASP recommendations presented in Section 2.3.
For the JavaScript context we limited the characters to
syntactically significant characters, such as {, }, (,), and
so on to avoid flagging most replace calls. Generally,
these are all the characters that can cause state transitions in
the HTML or JavaScript parser, for example, combinations
of the <, > and / characters can be used to break
out of the HTML context. Additionally we flag string

5

operations matching event handlers listed on [27] and built-
in functions which encode text values, such as escape
or encodeURIComponent.

For example, a call to replace(/</g, ’<’)
has the < character as first argument which should be
sanitized for the HTML as well as the HTML attribute
context, and thus the replace statement is flagged.

The part of the call graph encompassing all flagged
operations is identified as a sanitizer function. It contains
all statements aiding the sanitization of the given flow. For
each such candidate, we generate an abstract representation
of its behavior. Flows without flagged operations, i.e.,
without sanitization logic, are discarded from further
analysis.

The example finding in Figure 3 contains two taint
flows. The first contains no operations aiding sanitization
and is thus discarded, as it is not of interest for this
work. In the second flow, we have two calls to replace
operating on characters deemed as dangerous according to
the OWASP recommendations. These operations both take
place in the function f2, which is called by the function f1
handling the main application logic. We, therefore, detect
the function f2 to be the sanitizer and prepare it for further
analysis as described in the following.

3.4.1. Abstracting the JavaScript Semantics. The
JavaScript language provides a multitude of built-in
functions operating on strings which frequently overlap
in use. Our analysis, presented in the following, sup-
ports only a subset of these functions. The supported
functions are: replace (With or without the global
flag and with both literals and regular expressions as
first parameter), encodeURI, encodeURIComponent,
decodeURI, decodeURIComponent, JSON.parse,
JSON.stringify, substr, trim, toUpperCase,
toLowerCase, split, escape, and unescape. We
first preprocess the extracted sanitizer to only use the
aforementioned functions. In the following we highlight
some of the preprocessing steps we do in this stage.

Simplifications. String.substr, String.slice
and String.substring roughly provide the same
functionality. Therefore, we attempt to unify such calls
by transforming them to String.substr calls, by
recalculating the parameter values. Another example are
String.split(v1) calls directly followed by a call
to Array.join(v2). The two operations in combina-
tion are equivalent to String.replace(/v1/g, v2)
thus we transform them into a call to String.replace.

Replace with function as second argument. JavaScript
allows a function to be a passed as the second parame-
ter to the String.replace function [24]. For every
match of the search pattern, the function is called, and
a dynamic replacement value is calculated. We handle
such String.replace calls by dynamically evaluating
it (the function’s source code is available in the taint flow)
for all possible input values.

An example for such a call is shown in Figure 5. The
function is self-contained, i.e., it does not depend on any
objects from an outer scope. We, therefore, can enumerate
all values it matches based on the pattern. For each possible
match, we call the function to evaluate the replacement
value and transform it into its own replace statement. We

1 var r = data.replace(
2 /[<&>]/g,
3 function(e) { return "&#" +
4 e.charCodeAt(0) + ";" }
5);

Figure 5: replace call with callback argument.

1 var r2 = data.replace(
2 /[&<>"'`=\/]/g,
3 function(t) { return c[t] }
4);

Figure 6: Problematic replace call with callback argu-
ment.

then model the original replace statement as a sequence
of replace statements in the resulting dependency graph.
Splitting up a replace statement introduces the possibility
for interference. That is, characters resulting from a prior
replace call are processed again. This is in contrast to
a “Regular” replace operation which does a linear scan
of the input string and thus avoid such interferences by
design. We, therefore, order the operations to avoid any
such interferences.
For example for the function in Figure 5 our tool would
analyze the regular expression as well as the replace
function to yield the following tuples: [⟨&,& ⟩, ⟨<
,< ⟩, ⟨>,> ⟩]. Note that our analysis deliberately
puts the & character before the < character. In the original
order (<, &, >) the result of the replace on < (<)
would be processed again by the replace operation on &.
Note that this transformation is only valid for character
sets, e.g., /[&><"’]/, which match a finite number of
characters.

This approach also requires the function to be self-
contained, such that it does not reference values from outer
scopes. A pattern we commonly encountered uses a lookup
table from an outer scope to determine the replacement
values, as shown in Figure 6. The calculation depends
on the Map c, which is declared in an outer scope and
thus not visible in the taint flow, which only contains the
textual representation of the callback function. Therefore,
during our analysis, no information about c is available.
To still be able to analyze such flows, we approximate the
result. Such findings are marked as an approximation, and
we assume the empty string as the replacement value. This
does not cause false positives, according to our evaluation.
We validate each sanitizer detected as vulnerable and have
not found any occurrences where our analysis flagged a
sanitizer as insecure due to this.

3.4.2. Modeling Browser Encoding. One effective san-
itization technique is to use built-in browser functional-
ity such as the textContent [3] property of HTML
elements. An example of such a sanitizer is given in
Figure 7. In this case, a new text element is created with the
unsanitized input. On getting the innerHTML property,
the browser automatically sanitizes the text by HTML
encoding the <, >, & and non-breaking space (0xA0)
characters.

Our taint-aware browser is able to detect these cases by
instrumenting the EncodeTextFragment function [1]

6

of Firefox and adding it to the taint flow. In order to
evaluate the effectiveness of such sanitizers, we model calls
to the EncodeTextFragment as a series of replace
statements on the characters mentioned above. Similar
modelling is performed for the combination of calls
to setAttribute followed by outerHTML. In this
case the EncodeAttrString function is called which
encodes the ", & and non-breaking space characters, and
is modeled in a similar way.

3.4.3. Dependency Graphs. Based on the sanitizer detec-
tion and preprocessing described previously, we extracted
the slice of the Web application containing the sanitization
statements for a given taint flow.

For each such finding/sanitizer combination, we then
generate an abstract model describing the data flow of the
program slice, known as the Dependency Graph, based
on the definition of Yu et al. [44]. An example for such
a dependency graph (modeling f2, the detected sanitizer
from the second taint flow in Figure 3) is provided in
Figure 8. To correctly identify sanitizers that are identical,
we annotate each resulting dependency graph with a
sanitizer hash. This hash is built over the sequence of trans-
formation operations contained in the dependency graph.
Arguments with dynamic values (e.g., location.href)
are discarded to avoid misclassifications.

In addition to the statements modeling the program’s
execution, metadata is attached to the dependency graph,
containing information such as the domain of the original
finding, the execution context of the sink function, and
all information required to reconstruct the original exploit.
These dependency graphs are then used as the input for
the next stage, our automaton-based security analysis.

3.5. Automaton-based Evaluation

In order to evaluate the effectiveness of a sanitization
function, we use symbolic string analysis to compute the
set of strings allowed at the function’s output. If the set of
output strings contains values which could lead to XSS,
then the sanitizer is labeled as vulnerable.

In our analysis, we use a deterministic finite automaton
(DFA) to represent the set of allowed strings after each
operation in the dependency graph. A DFA either accepts
or rejects an input string by performing a series of state
transitions determined by the sequence of characters in the
string. A DFA consists of a set of states labeled as either
accepting or rejecting. The DFA begins in the initial state,
and the next state is determined by the value of the next
character in the string. State transitions are performed in
sequence until the end of the string is reached. A given
input string is accepted if the state machine ends in an
accepting state.

1 function sanitize(untrusted) {
2 const trashSpan =

document.createElement('span');↪→

3 trashSpan.textContent = untrustedText;
4 return trashSpan.innerHTML;
5 }

Figure 7: Example sanitizer using textContent.

Return: x

Var: x

replace

RegExp: />/g Lit: > Var: x

replace

RegExp: /</g Lit: < Var: x

Input: x

Figure 8: Dependency Graph Example

0start 1

not [<, >]

[<, >]

Figure 9: Sample Deterministic Finite Automaton accept-
ing the regular expression /ˆ[ˆ<>]*$/.

We compute the output DFA of a given dependency
graph by iteratively computing DFAs for each node in
the graph. The DFA of the current node is computed by
applying transformations on the previous node’s DFA cor-
responding to the given string operation (e.g., replace).
We set the input of the dependency graph to the DFA
accepting all possible strings values, denoted Σ∗. The
DFA obtained at the output of the dependency graph is
known as the post-image, and represents the set of string
which can be returned by the sanitization function. Note
that it is possible to compute the same post-image for
multiple dependency graphs: for example, any sanitizers
comprising only single replace operations will result in a
Σ∗ post-image.

To illustrate this concept, Figure 9 shows the post-
image after applying the dependency graph shown in
Figure 8. In this DFA, the initial state is accepting, which
means the empty string is accepted. The DFA will remain
in the initial state until a < or > character is encountered.
In this case, the DFA will transition to state 1, which
rejects the string. As there are no transitions out of this
state, it is also known as a sink state. As such, the DFA
will only accept strings that do not contain <> characters.

We evaluate the effectiveness of a sanitization function
by computing the intersection of the post-image with a DFA
representing an XSS payload. A non-empty intersection
implies that there exists a set of input strings which are
transformed by the sanitizer in such a way that leads to
an XSS payload at the function’s output. We construct the
payload DFA as follows: first, we obtain the original taint
flow where the sanitization function was discovered from
the dependency graph’s metadata. The sink function and
injection context of the taint flow is then used to generate
exploit strings using the method described in Section 3.3.
Finally, we compute the payload DFA as the set of strings
that contain at least one of the generated exploits. Overall,

7

we define a sanitizer as vulnerable if we discover at least
one payload DFA with a non-empty intersection.

For example, consider an instance of the sanitizer
shown in Figure 8 with a taint flow into the con-
tent of an HTML element via the document.write
method. In this case we first generate an exploit
string of the form <script>alert(1)</script>.
(breakOut and breakIn sequences are omitted here
for brevity.) The corresponding payload DFA will be
.*<script>alert(1)</script>.*, that is any
string containing the generated payload. The intersection
of this DFA with the post-image in Figure 8 will be empty
as the < and > characters are removed from the output, and
therefore we label the sanitizer as secure. Now consider
that we discover a second instance of the same sanitizer
with a taint flow into a double-quoted attribute of an image
tag. In this case, we generate a payload DFA containing
" onload=alert(1) foo=". (onerror omitted for
brevity.) In this context the sanitizer is vulnerable as strings
containing the " character are accepted by the post-image
DFA. Given that this sanitizer has been found with at least
one non-zero intersection, we label it as vulnerable for our
analysis.

In order to successfully validate vulnerable sanitizers,
we also need to compute the input DFA which corresponds
to a vulnerable output. To do this, we perform a second
iterative analysis over the dependency graph, but this time
starting at the return node and traversing the graph in
reverse, applying inverse DFA transformations in turn until
the input node is reached. The return node value is set to
the intersection of the post-image and the payload DFA,
and the resulting DFA at the input node is known as the
pre-image. We then generate a single string from the pre-
image and use this to construct a modified exploit URL.

Returning to our example, the computed pre-
image is simply the set of strings containing " on-
load=alert(1) foo=", as the payload is not trans-
formed by the sanitizer. This will not always be the
case, however. Consider a second example with a san-
itizer comparing a single replace operation of the form
input.replace(’"’, ’’), which will replace the
first instance of a double-quote character in the string.
Assuming the sanitizer is also found in a double-quoted
attribute context, the corresponding pre-image will be ""
onload=alert(1) foo=".

3.5.1. Implementation. Our automaton implementation,
referred to as SemAttack in the following, is based on
SemRep [5] and uses the MONA package [18] to repre-
sent DFAs as Multi-terminal Binary Decision Diagrams
(MBDDs). We made significant enhancements to SemRep
in order to support the string operations found in modern
client-side JavaScript.

One important enhancement was the modelling of
operations which only replace the first instance of a
search pattern. Examples include string replace opera-
tions (e.g., replace("&", "&")) and regular
expressions which do not use the global flag (e.g., re-
place(/[<>]/, ’’)). We also implemented function
modeling for built-in sanitization operations (e.g., escape,
encodeURI, JSON.stringify). With our improve-
ments we were able to model 98.4% of the operations
in all examined flows collected in Section 4. In order to

successfully model search patterns found in the wild, we en-
hanced the regular expression engine to include e.g. correct
parsing of shorthand classes such as \d\D\s\S\w\W\p.

In order to achieve the performance necessary for large-
scale sanitizer evaluation, we also enhanced the MONA
library to allow thread-safe DFA operations and, therefore,
parallel execution on modern multi-core CPUs. In addition,
we also added robust error handling and propagation to
ensure that runtime exceptions did not cause the entire
analysis to crash. During pre-image computation, we
observed that some operations could cause the automaton
to grow rapidly in size, causing an error as the internal
MONA limit on the number of automaton states (224)
is reached. An example of this includes chains of string
deletion operations (i.e., replace(pattern, "")). In
these cases, we create a single example string from the
DFA (known as a singleton) and attempt the operation
again with the singleton DFA. This DFA represents a
subset of the original DFA, and will therefore be smaller
and less likely to reach the internal limit of MONA. This
approximation is sufficient for our analysis as it is still
possible to generate a single exploit URL from the subset.
During our empirical study, we were able to successfully
generate and validate payloads for sanitizers where this
approximation was necessary.

4. Empirical Study

In this section, we apply the techniques described in
Section 3 to perform a large-scale analysis of modern
client-side JavaScript sanitizer functions.

We conducted our study over 2 weeks between April
and May 2021 through a US-based IP. We took the
top 20,000 entries in the Tranco [22] list (ID: G4NK)
generated on 19th April 2021. We visited each top-level
URL, collecting taint flows as described in Section 3.2. In
addition, a random sample of 100 links from each top-level
URL were extracted and added to the queue of URLs to
be visited. We favor a broader crawl with less depth than
the work from Lekies et al. [23], yet visit more pages per
site than Melicher et al. [25]. We intentionally make this
design choice to cover both high number of sites and a
broad variety of code on each site.

During our regular crawl we visited 876,872 pages
and 4,389,872 frames. The number of taint flows collected
from both regular and validation crawls are summarized
in Table 2. Out of 124 million findings, we were able to
generate 1,746,846 exploit URLs for 3,787 domains. Out

Regular Validation Total

Findings 124,015,072 55,930,555 179,945,542

Taint Flows 418,342,032 187,097,917 605,439,949

URL → HTML 1,824,752 (†) 19,343,035 21,167,787

URL → JS 172,774 (†) 1,152,973 1,325,747

Examined Flows 0 20,496,008 (*) 20,496,008 (*)

(†) Exploit URLs were generated for these flows
(*) Examined Flows originate in externally controllable sources
and flow into a sink allowing script execution.

Table 2: Crawl Results

8

https://tranco-list.eu/list/G4NK/20000{}

Description Count On n Domains

Unique Sanitizer 705 1,415
Post Image 272 1,415
Vulnerable Sanitizer 88 (12.5%) 102

Table 3: Sanitizer Analysis Results

of those we could successfully validate 709,683 (40.6%)
client-side XSS vulnerabilities.

4.1. Hand-written Sanitizer Study Results

In this section we provide an overview of the sanitizing
approaches we encountered during our study. Table 3
summarizes our findings. We discuss some general trends
here and give an in-depth exploration of some of the more
interesting findings in the following sections.

In the following we will use the taint flows collected
in the validation crawl for further analysis. This allows
us to detect conditionally executed sanitizer functions
such as the one shown in Figure 4. This also removes
all domains without findings relevant for client-side XSS
from the investigated data set. Thus, we only consider the
20,496,008 flows denoted as examined flows in Table 2
which occurred on 3,787 domains, where domain refers to
the effective top-level domain plus one (eTLD+1), from
here on. The number of domains involved in each step is:

20,000
Dangerous−−−−−→

Flows
3,787

with Sanitizer−−−−−−−→ 1,415
Vulnerable−−−−−→ 102

In this section we provide an overview of the sanitizing
approaches we encountered during our study. Table 3
summarizes our findings. We discuss some general trends
here and give an in-depth exploration of some of the more
interesting findings in the following sections.

We discovered sanitizer functions in 9,984,089 taint
flows, that is, in roughly half the collected flows. These
flows occur on 1,415 domains out of the validation data
set of 3,787 domains, where domain refers to the effective
top-level domain plus one (eTLD+1). The remaining 2,372
domains have directly exploitable taint flows, which we do
not consider any further. While the numbers may appear
high, they are in line with the findings of prior work, which
indicated around 10% of the top 5,000 and top 10,000 sites
to be vulnerable [23, 36, 37]. In total we discovered 817
unique sanitizer functions, where uniqueness is determined
based on the sanitizer hash as described in Section 3.4.3.
Out of these 817 sanitizers we were able to analyze 705.
The automaton analysis took just under 30 minutes running
on an AMD EPYC 7702P 64-Core processor.

We were unable to analyze the remaining 112 sani-
tizers due to four different reasons: In 42 cases, parts of
the URL were deleted/changed with a call to replace,
e.g., href.replace(location.hash, ""). This
poses an issue for the analysis, as we only observe the
value of location.hash. For the sake of simplicity,
assume location.hash was initially set to #foo in
the crawl. To exploit the flaw, SemAttack chooses the pay-
load <script>alert(1)</script>. Based on the
observed semantics of the sanitizer, removal of #foo has
no impact on the payload, though. SemAttack is therefore
unable to properly model the flow. Due to limitations of our
regular expression engine we were unable to successfully

0 5,000 10,000 15,000 20,000
0

20

40

60

80

100

Tranco Domain Ranking

N
um

be
r

of
D

om
ai

ns

With Sanitizer
3rd Party Sanitizer
Vulnerable Sanitizer
Validated Sanitizer

Figure 10: Number of domains with sanitizers ordered by
Tranco ranking

parse regular expressions for 5 sanitizers. This is caused
by the regular expression engine of our analysis framework
not supporting all features implemented by a modern
JavaScript engine. The automata of 14 sanitizers were
too big to model for the MONA library, which imposes
an internal limit on the number of states. This is therefore
not a general limitation of the presented approach. 51
sanitizers contained calls to functions not modeled by
our framework, such as DOMParser.parseHTML or
String.charAt.

Out of the 705 sanitizers our analysis flagged 88 dis-
tributed across 102 domains as insecure for their injection
context.

Figure 10 shows the number of domains containing at
least one sanitizer and the number of domains containing
at least one vulnerable sanitizer, grouped by Tranco list
ranking. The graph indicates that highly ranked domains
are more likely to deploy a sanitization function than lower
ranked sites. For example, sanitizers were found in 100
domains within the top 1,000 ranked domains, compared
to 53 in the lowest 1,000 ranked domains considered
in our study. Domain ranking appears to have a weaker
effect on sanitizer effectiveness, with vulnerable sanitizers
found across almost all rankings. The average fraction
of domains with a sanitizer which is vulnerable is 7.2%,
and remains approximately constant across the domain
rankings considered.

4.2. Evaluation

In order to validate our approach, we con-
structed XSS payloads designed to circumvent the
detected sanitizer functions. In this case, we fo-
cus on taint flows which are directly exploitable
with no additional user interaction, i.e., those flowing
from URL-based sources (location.hash, loca-
tion.href, document.documentURI) into HTML
(document.write, document.writeln, inner-
HTML, outerHTML and insertAdjacentHTML) or
JavaScript (eval, setTimeout and new Function)
sinks. For each taint flow, we generated an appropriate

9

XSS payload based on the injection context, following
the method described by Lekies et al. [23]. The payload
is then converted into a DFA and used as input to the
automaton analysis as described in Section 3.

In total we generated 4,093 unique exploit URLs for
the 88 sanitizers classified as insecure using the technique
described above. Of these, we were unable to validate 10
sanitizers as either the URL was no longer reachable, or the
original taint flow could not be found. Of the remaining 78
sanitizers, we were able to successfully trigger JavaScript
code execution with at least one URL for 40 sanitizers
(51.3%), using a combination of fully-automated (36)
techniques and manual inspection (4). Some examples
of such bypassed sanitizers are presented in Section 4.3.

Of the 38 unsuccessful exploits, we found the following
failure classes: In 20 flows the payload was removed via
String.substring operations, e.g., by completely
deleting the fragment of the URL. This in particular
occurred for combinations of indexOf and substring
operations. In such cases, the JavaScript code would,
e.g., determine the index of the first # and cut off the
string there. The observed value in our analysis, though,
is just a number for which we are unable to ascertain
automatically that it is the result of the aforementioned
computation. In 6 cases, the exploit payload caused an
error in the application’s server-side logic. This happens
if the query parameter is used to e.g., redirect the user
to a specific page. The exploit payload is not a valid
value and thus causes an error. In 5 cases we could
successfully inject content into a script.text sink,
but the payload did not lead to a successful exploit due to
a non-executable script type (application/ld+json).
In 4 cases we could successfully identify a sanitization
function, but functional code logic outside of the sanitizer
prevented code execution. For example, we observed a
common pattern whereby parameters are extracted from
the URL query using split(’&’) and split(’=’)
operations outside of the identified sanitizer. This prevented
the successful execution of an EventHandler exploit which
requires the = character. In 2 cases the sanitization depends
on heavy usage of branching, that is some functionality
is only executed if characters are present in the input
string. Thus during validation our transformed payload
contains characters not present in the initial payload and
thus triggers code paths not seen before. This is an inherent
limitation of abstracting the behavior of a sanitizer based
on the observed operations. Lastly, in 1 case our regular
expression engine did not support parts of the replace
pattern (i.e., named groups) and was incorrectly parsed by
SemAttack.

As shown in Figure 10, successfully validated vulner-
able sanitizers appear across the entire range of Tranco
rankings considered in this study. The affected sites include
several banking sites, popular retailers and businesses, as
well as media and news sites.

4.2.1. Ethical Considerations. Testing XSS payloads on
publicly accessible websites comes with a risk of harm to
those websites, which we aim to minimize in two ways.
Firstly, client-side XSS vulnerabilities are executed in the
browser, therefore minimizing the impact on server-side
applications. In the large majority of cases, the injected
exploit is part of the URL fragment, which is only evaluated

in the browser and therefore never reaches the web server.
Secondly, our injected payloads call a non-malicious,
custom internal logging function, and therefore should
not interfere with the behavior of the website.

In addition, successfully validated exploits discovered
during this study could be adapted by hackers to perform
real attacks. We mitigated this risk twofold, first, we
notified all affected website operators before publication,
secondly we do not present individual exploit details in
this paper or name affected websites.

4.3. Hand Sanitizer Cabinet of Horrors

Based on the results of our automated analysis, we
further analyzed the actual code of sanitizers which were
prone to be bypassed. In the following, we present several
examples of such sanitizers, each of which represents a
class of flawed sanitizers discovered in our study.

Regular Expression Limitations. Figure 11 highlights
some of the difficulties of trying to sanitize HTML code
via regular expressions. The replace statement on line 2
attempts to remove all (opening) script, link or image tags.
While the regular expression itself is not problematic, it is
not possible to remove all problematic tags this way. As the
regular expression will do a linear scan of the string, it is
possible to produce e.g., script tags by inserting fragments
the replace operation will delete. The following replace
statements aim to counteract this issue. The developer,
however, failed to take into account that in JavaScript a
replace call with a literal as the first argument will only
replace the value once.

The payload generated by SemAttack which
successfully circumvents the sanitizer is given as follows:
#"<><<a>script>alert(1)</script>. Both
breakOut and breakIn sequences are omitted for clarity in
the presented payload. We observe that in order to bypass
the replacement in line 2, SemAttack injects an <a>
within the opening <script> tag. Hence, the regular
expression does not match the script tag, but only the
a tag and removes it. Afterward, though, the result is a
valid opening script tag. Next, the replacements in lines 3
through 6 all only replace the first occurrence. To bypass
these operations, we prepend #"<> to the payload, which
is removed before the sink access in line 7.

1 var url = location.href.replace(
2 /<script[\S\s]*?\1>|<\/?(a|img)[ˆ>]*>/gi,

"")↪→

3 .replace('"', "")
4 .replace(">", "")
5 .replace("#", "")
6 .replace("<", "");
7 document.write('<script type="text/javascript"

src="example.org?url='+url+'"
></script>');

↪→

↪→

Figure 11: Nested tags pose difficulties for regular expres-
sions

Optimized for Specific Payload. Figure 12 shows
a sanitizer which exactly protects against a commonly
used payload to demonstrate XSS vulnerabilities, i.e.,
alert(’xss’). Notably, though, the sanitizer ignores
the ability of JavaScript to rely on Template Strings. These

10

allow to invoke functions even without relying on ().
Furthermore, the function does not recursively replace the
string alert. Hence, we can simply modify the payload
from alert(1) to alalertert‘1‘ to bypass this
filter.

1 function f(v) {
2 return v.replace(/'/g, "").replace(/\(/g,

"")↪→

3 .replace(/\)/g, "").replace(/alert/g, "");
4 }

Figure 12: Sanitizer against specific payload

Wrong Context. Figure 13 again highlights how context-
sensitive sanitizing statements must be. Notably, the injec-
tion occurs within an HTML sink. Hence, the developer
seemingly built a sanitizer function that encodes <> to
avoid the injection of a new script tag. However, if we also
consider the injection context, we observe that the injection
occurs within a double-quoted src attribute of an iframe.
Here, we do not have to break out of the iframe, but rather
add an event listener to it. Specifically, a valid payload
(which passes the sanitizer) is " onload=alert(1)
foo=. This underlines the necessity to not only take the
sink into account but also the exact injection context when
designing one’s own sanitizer.

1 function sanitize(v) {
2 return v.replace(/</g, "<")
3 .replace(/>/g, ">");
4 }
5 var url = 'http://example.org;cat=' +
6 sanitize(cat) + '?';
7 document.write('<iframe src="' + url + '"

style="display:none"></iframe>');↪→

Figure 13: Simplified sanitizer for the wrong context

Removing only some Problematic Tags. Figure 14
highlights a lack of understanding what HTML tags can
cause code execution. It attempts to filter out script,
a and img tags. While these are commonly used to
demonstrate XSS vulnerabilities, only removing these tags
is insufficient. Simply swapping the to the depre-
cated <image> tag suffices to circumvent the sanitizer.
Moreover, other elements such as iframes, input fields,
or audio also offer support for event handlers which can
be abused here. This highlights an additional issue with
filtering against a list of problematic tags or attributes. As
the Web constantly evolves, HTML elements are added or
deprecated frequently. Therefore a blocklisting approach
requires frequent updates to stay secure.

1 v = decodeURIComponent(location.hash.replace(
'#', '').split('/')[2]);↪→

2 v = v.replace(
3 /<img(.*)?(\/)?>(.*)?(<\/img>)?/gi, '')
4 .replace(/<a(.*)?(\/)?>(.*)?(<\/a>)?/gi, '')
5 .replace(/<script(.*)?(\/)?>(.*)?

(<\/script>)?/gi, '');↪→

Figure 14: Sanitizer matching specific tags

Order of Replace Statements. In addition to the
sanitizers observed in our large-scale crawl, we also
conducted a prestudy to our work, in which we found
one additional interesting case, which we highlight in the
following.

Figure 15 shows a sanitizer that would work if the
replace statements were swapped. Due to the order of
the replace operations, it is trivial to circumvent this
sanitizer. The first regular expression attempts to replace
opening script tags, followed by the second regular ex-
pression, which removes any other tag, such as <a>.
However, the attacker can still circumvent this to craft
a payload that does not contain <script> when pass-
ing the replace in lines 1 and 2 but does after line 4.
Specifically, SemAttack produced the following payload:
<<0>script>alert(1)</<0>script>. The <0>
tag matches the second replace statement on lines 3 to 4,
but its existence prevents the first replace operation (on
lines 1 to 2) from sanitizing the input.

1 e = e.replace(/[<][s][c][r][i][p][t][ˆ>]*>
2 ([\S\s]*?)<\/[s][c][r][i][p][t][>]/gim, "");
3 e = e.replace(
4 /<\/?\w(?:[ˆ"'>]|"[ˆ"]*"|'[ˆ']*')*>/gim,

"");↪→

5 document.write(e);

Figure 15: Broken due to statement order

5. Discussion

In this section, we first outline the limitations of our
work. Further, we discuss the trends we observed in our
large-scale study of sanitization practices on the modern
Web. Finally, we identify lessons to be learned from our
work that should be taken into account when designing
sanitization routines.

5.1. Limitations

Our analysis has certain limitations, which we briefly
discuss in the following. We note that obviously, our
insights are biased toward high-profile pages and the lack
of meaningful interaction (such as login or using existing
functionality in the sites) implies that our results are likely
a lower bound for sanitization on the Web.

SemAttack contains a regular expression engine that
parses regular expressions and turns them into DFAs. While
we are able to model most of the encountered expressions,
there are several regular expression features we do not
support. Those include lazy matching (usually just an
optimization), anchors, backreferences and named groups,
lookaheads or look behinds.This is an implementation
detail and not an inherent limitation of our approach.

Our analysis cannot model taint flows originating
from multiple different sources. It is, therefore, unable
to generate exploit payloads where data from, e.g., lo-
cation.search and location.hash are combined
in a way that only by splitting the payload over the two
parts of the URL a successful exploit is possible. In this
work, we consider each taint flow separately.

If the sanitization functionality is mixed with complex
business logic code, our analysis framework fails to

11

1 v = '<a href="' + elem.url.replace(/"/g,
""")+ ">";↪→

Figure 16: Most specific and minimal sanitizer

Context HTML HTML Attr. JavaScript

Unique Sanitizer 169 480 55
Angle Brackets 129 (76.3%) 367 (76.8%) 33 (60.0%)
Double Quote 100 (59.2%) 379 (79.0%) 30 (54.6%)
Single Quote 93 (55.0%) 287 (59.8%) 32 (58.2%)
Backticks 82 (48.5%) 299 (62.3%) 12 (21.8%)
Generic (*) 78 (46.2%) 87 (18.1%) 4 (7.3%)

(*) based on OWASP recommendations (Section 2.3)
Table 4: Generality of Analyzed Sanitizing Functions

terminate due to the automata exploding in complexity.
This can happen if the protection code is inlined into the
regular code of the application or the collected location
information are insufficient to reconstruct the correct call
tree and thus includes business logic. This limitation is
not general to our approach but purely an implementation
detail of the used libraries.

5.2. Current State of Sanitization

Our automated way of reasoning about sanitizer se-
mantics allows us to assess the current state of sanitization
on the Web, which we present in the following.

5.2.1. Generality. One interesting observation is that most
websites deploy sanitizers that are not generic. That is,
they only work for the injection context they are used in.

When comparing the set of encoded characters against
the OWASP recommendations presented in Section 2.3,
most real-world sanitizers encode fewer characters. Table 4
shows which characters sanitizers encode for different
contexts. It is interesting to note how few of the sanitizers
we encountered conform to the OWASP recommendations.
This is possibly rooted in the fact that these recommenda-
tions are rather aggressive, and developers instead build
more context-specific sanitizers. Notably, as our discussion
in Section 4.3 shows, this comes with the increased risk
of missing edge cases which in turn allow for bypasses.

An example of a minimal sanitizer is given in Figure 16,
which only escapes exactly the " character required
to break out of the attribute context. Such sanitization
routines have the drawback that minimal changes to the
surrounding code, e.g., the href attribute switching from
being enclosed in double quotes to single quotes renders
the sanitizer insecure.

Most sanitizers we encountered are neither generic nor
minimal. They encode varying amounts of the characters
recommended for a given context but rarely all. This is
troubling, as these sanitizers seem generic enough to reuse
in different places, but they might not prevent XSS in
every context.

5.2.2. Usage Patterns. In this section, we investigate the
origin of vulnerable sanitizers and their prevalence across
the Web. Table 5 shows an overview of the effectiveness
of first- and third-party sanitizers. A third-party sanitizer
is defined as a sanitizer function whose script location is

Domains Total Vulnerable Validated

Total sanitizer domains 1,415 102 (7.2%) 46 (3.3%)
With first party sanitizer 646 64 (9.9%) 33 (5.1%)
With third party sanitizer 880 41 (4.7%) 15 (1.7%)

Table 5: Comparison of the effectiveness of first- and
third-party sanitizers.

100 101 102 103

100

101

102

Sanitizer Domain Frequency Rank

N
um

be
r

of
D

om
ai

ns
in

cl
.S

an
iti

ze
r Count

Validated

Figure 17: Rank-frequency plot of the number of eTLDs
which include a sanitizer from a given domain.

hosted on a different domain to the eTLD+1 where it is
used. In comparison, a first-party sanitizer is one whose
script is hosted on the same domain where it is used. Note
that it is possible for a domain to contain both first and
third-party sanitizers, such that the number of domains
containing first and third-party sanitizers is larger than the
total. Table 5 indicates that while third-party sanitizers
are more prevalent than first-party sanitizers, vulnerable
third-party sanitizers appear on fewer domains.

We also investigated how frequently sanitizers from a
particular domain are included on other sites. To do this,
we first grouped sanitizers by the domain on which the
script containing the sanitizer function is hosted (referred
to as the sanitizer domain in the following). For each
sanitizer domain, we then counted the number of unique
domains the sanitizer appeared on. Finally, the list of
sanitizer domains was sorted in descending order by the
number of domains that included it. The result is the rank-
frequency plot shown in Figure 17. The data follow a
typical Zipf distribution, with a small number of sanitizers
appearing on many domains and many sanitizers included
on a few domains. For example, 28.8% of the domains
considered include sanitizers from the top three sanitizers
domains, whereas 91.0% of sanitizers appear on only a
single domain. Sanitizers that are flagged as vulnerable by
our analysis are also shown on the plot.

Note that sanitizers from four domains could not be
validated as vulnerable for all of the domains on which they
were included (represented by the four leftmost crosses
in Figure 17). Manual inspection of these cases revealed
that scripts containing both vulnerable and non-vulnerable
sanitizers were being served from each of the domains.

Overall, vulnerable sanitizers appear on an average of

12

1.04 domains, compared to 1.93 for all sanitizers. In other
words, there are a large number of vulnerable sanitizers
which are each used on a small number of domains.
These observations support the hypothesis that vulnerable
sanitizers are more likely to be written directly by website
developers rather than being included from well-tested
external libraries.

5.2.3. Standard Sanitizers. Although browsers are start-
ing to experimentally support the Sanitizer API [39],
no major browser currently ships with a built-in san-
itization routine for HTML or JavaScript. The closest
workaround available to developers is to use a combination
of textContent and innerHTML as shown in Figure 7.
We found evidence of this behavior in 9.2% of the sanitiz-
ers discovered in our study. While this functionality may
offer protection against client-side XSS in some contexts,
it is not an obvious choice for developers.

A more popular alternative is to use built-in URL encod-
ing functions, such as encodeURIComponent, which
appeared in 30.8% of sanitizers. Similar functions, such as
encodeURI and escape were found in 1.2% and 6.5%
of cases respectively. Besides the fact that escape is now
deprecated, none of the functions mentioned are sufficient
to fully protect against client-side XSS (as demonstrated
in Figure 1). Therefore, developers are currently left to
rely on third-party libraries or write their own functions.

The third-party library providing sanitization routines
we encountered most frequently is the Google closure
framework. By matching the generated dependency graphs
against the regular expressions used by closure [13] to
sanitize input, we were able to detect usage of Closure in
3.2% of examined flows. Notably, this underlines that the
vast majority of sanitization on the Web does not occur
with widely-used and well-tested libraries but rather that
with self-developed and less-tested hand sanitizers.

5.2.4. Upcoming Browser based XSS Mitigations.
Browser vendors are aware of these shortcomings and
are currently collaborating on working drafts for two XSS
mitigation technologies, namely Trusted Types [14] and the
aforementioned Sanitizer API [39].The two proposals are
complementary, with Trusted Types aiming to make DOM
interaction secure by default via sanitization enforcement,
while the Sanitizer API provides built-in sanitizer function-
ality for HTML contexts. We will detail both proposals in
the following.

Trusted Types changes how developers interact with
XSS sinks so that they accept trusted values as arguments
instead of raw Strings. These trusted values, e.g., Trusted-
HTML for HTML sinks, must be created by calling a so-
called policy, which is registered earlier in the program by
the developer. These policies effectively define sanitizing
functions for three different contexts: HTML, JavaScript
and script URLs. An example on how such a policy is
defined and used is provided in Figure 18. Trusted Type en-
forcement for XSS relevant sinks is enforced via options in
the CSP. For the example, setting a CSP such as require-
trusted-types-for ’script’; causes the unsafe
assignment on line 6 to throw an type error as the
innerHTML sink requires TrustedHTML.

The security of the sanitizers present in the policies
is explicitly left to the developer. Therefore the Trusted

1 const p = '';
2 htmlPolicy =

trustedTypes.createPolicy('sanitize', {↪→

3 createHTML: s => s.replace(/\</g, '<')
4 });
5 node.innerHTML = htmlPolicy.createHTML(p);
6 node.innerHTML = p; // unsafe

Figure 18: Creating and Using a Trusted Types Policy

1 let sanitizer = new Sanitizer();
2 let payload = '';
3 node.setHTML(payload, sanitizer);
4 let sanitized = sanitizer.sanitizeFor('div',

payload);↪→

5 node.replaceChildren(...sanitized.childNodes);

Figure 19: Usage of the Sanitizer API

Types proposal does not mitigate the risk of broken hand
sanitizers. It would be perfectly possible, for example, to
include one of the anti-patterns described in Section 4.3
as the sanitizer function in line 2 of Figure 18. In fact,
despite stating that “more than half of the DOM XSS root
causes were due to bugs in HTML sanitizers”, the 2021
report into the state of Trusted Types [20] explicitly does
not attempt to solve this issue.

Nevertheless, by making modern web frameworks such
as Angular compatible with Trusted Types, a significant
number of websites can gain XSS protection with no
changes required to user code [38].

The Sanitizer API, on the other hand, adds sanitizer
functionality for HTML contexts to the standard JavaScript
environment. As it is built into the browser, the Sanitizer
API can reuse the browser’s HTML parser machinery and
thus eliminate all issues stemming from diverging behavior
between the parsing functionality available to developers
and how the browser actually interprets HTML. However,
due to the context sensitivity of sanitization, the Sanitizer
API requires its users to be very explicit about the context
in which the output will be used. This requires more code
changes by developers and is therefore more difficult to use
as a drop-in replacement. An example of the API’s usage
is shown in Figure 19 and results in a node containing
.

Unlike the sanitizers we considered during our study,
both the Sanitizer API as well as the Trusted Types machin-
ery do not perform string-to-string transformations. Instead
they return typed objects encapsulating the sanitized input.
This makes it impossible to directly mutate the sanitized
value via string operations – a common coding pattern
according to our study. This prevents changes to the
sanitized value which might alter how the string is parsed,
potentially reintroducing XSS vulnerabilities.

Returning to the (in)security of sanitizing functions,
Trusted Types still allow for broken sanitizers to be
registered as policies. The Sanitizer API on the other
hand aims to eliminate broken sanitizer usage by making a
secure alternative easily available to web developers. The
combination of both, enforcement and a secure sanitizer,
would make for an universal XSS mitigation. However it
is currently not possible to combine both approaches in
an always secure fashion.

13

5.3. Key Insights

Our analysis has shown that sanitization on the client-
side Web is brittle and highly specific to the injection
context. In particular, with respect to HTML, there are
no built-in functions that allow parsing and sanitization
of HTML. Hence, as observed in Section 4.3, developers
use methods that are unfit, such as blocklisting certain
keywords (such as alert) or relying on regular ex-
pressions to parse HTML. This is not only infeasible
given that HTML is a context-free language, which can
therefore not be represented through regular expressions in
its entirety. Second, browsers are error-tolerant, leading to
attack classes such as mutation-based XSS [15], rendering
regular expression parsing dangerous [8].

For JavaScript sinks, developers also often rely on
built-in functionality that actually serves different purposes
(namely URL encoding). We found several instances where
developers relied on built-in functions which are unfit
for the purpose (i.e., encodeURIComponent, escape
and encodeURI) depending on the surrounding context.
And even in cases where this “sanitization” was sufficient,
subtle changes to the surrounding code, e.g., swapping
double-quoted attributes to single quotes, could render
the “protection” useless. Despite their shortcomings, these
operations are frequently used.

Moreover, developers seem to misunderstand the in-
tricacies of certain constructs, most prominently the re-
place functionality. The behavior of the replace op-
eration differs between three cases: 1) a string literal is
used as the needle, 2) a regular expression is used as the
needle, and 3) a regular expression with the global flag
is used. Contrary to other programming languages (such
as Python, PHP, or Java), if invoked with a string, the
default behavior of replace is to only replace the first
occurrence of the pattern. The same applies to the case
with a regular expression (without the global flag). This
leads to sanitization attempts such as the one shown in
Figure 11.

Finally, attempts at complex solutions are often des-
tined to fail. Generally speaking, it is possible to write a
secure sanitizer using regular expressions (as is done in
the Closure compiler). Their promising approach is not to
attempt to parse the structure of the input at all. Purely
encoding the characters described in Table 1 is sufficient to
write a secure sanitizer. This may, in turn, have an impact
on functionality (e.g., because parts of a URL are encoded
and the server misunderstands them), but such encoding
is secure.

5.4. Calls to Action

Our results highlight the fact that developers are often
forced to rely on unsuitable constructs for sanitization and
regularly lack knowledge about the intricacies of JavaScript
(such as the replace behavior) and the specifics of
potential XSS payloads (e.g., forgetting to remove iframe
tags in a sanitizer). All of these aspects highlight the need
for browsers to include support for input sanitization. Such
built-in support would also benefit from automatic updates,
as even for a well-maintained project like DOMPurify, new
bypasses are found regularly. Furthermore, ECMA should
consider updating the specification for built-in functions

such as replace to align them with other programming
languages developers might be familiar with, e.g., by
changing the semantics of replace to replaceAll
and making replaceOnce explicit.

6. Conclusion

In this paper, we studied the prevalence and security
properties of sanitization routines which aim to protect
against client-side XSS in the wild. To this end, we
first built a crawling framework to collect taint flows
and operation traces during page execution. Based on
these traces, we then automatically classified certain flows
as having passed through a sanitizer and extracted the
operation slices from the taint flow for further analysis. To
automatically reason about the (in)security of sanitizers, we
then developed SemAttack, an automaton-based approach
which is able to determine the complete set of outputs
a given sanitizer can produce. If a potentially dangerous
output is detected, SemAttack was able to automatically
transform the exploit payload such that the actual payload
survives sanitization attempts.

Using these techniques we detected 705 different
sanitization routines on 1,415 domains out of the top
20,000 most popular websites. Our analysis classified
88 sanitizers as insecure for the injection context they
were used in, and in 40 cases we were able to generate
sanitizer-bypassing exploit payloads which successfully
triggered JavaScript execution. We found that vulnerable
sanitizers are present across the entire range of website
rankings considered in the study and that sanitizers written
by website developers are more likely to be vulnerable
than those included from third-party domains.

Our findings highlight the lack of intuitive and ap-
propriate tools available to JavaScript developers to write
generic and secure sanitizers. This confirms the urgent
need for a standardized sanitization API available directly
in the browser. We thus encourage browser vendors to
adopt the currently proposed draft for such an API [39].

Acknowledgments

We gratefully acknowledge funding by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972. This work has also received funding
from the European Union’s Horizon 2020 research and
innovation programme under project TESTABLE, grant
agreement No 101019206.

14

References

[1] “Mozilla Central Mercurial Repository,”
https://hg.mozilla.org/mozilla-central/file/default/
dom/base/nsContentUtils.cpp, accessed 22.07.2021.

[2] “RegEx match open tags except XHTML self-
contained tags,” https://stackoverflow.com/a/1732454,
accessed 09.04.2021.

[3] “DOM Living Standard,” https://dom.spec.whatwg.
org/#dom-node-textcontent, accessed 22.07.2021.

[4] M. Alkhalaf, T. Bultan, and J. L. Gallegos, “Verifying
Client-Side Input Validation Functions using String
Analysis,” in International Conference on Software
Engineering, 2012.

[5] M. Alkhalaf, A. Aydin, and T. Bultan, “Semantic Dif-
ferential Repair for Input Validation and Sanitization,”
in International Symposium on Software Testing and
Analysis, 2014.

[6] G. Argyros, I. Stais, A. Kiayias, and A. D. Keromytis,
“Back in Black: Towards Formal, Black Box Analysis
of Sanitizers and Filters,” in IEEE Symposium on
Security and Privacy, 2016, pp. 91–109.

[7] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna, “Saner: Com-
posing Static and Dynamic Analysis to Validate San-
itization in Web Applications.” in IEEE Symposium
on Security and Privacy, 2008.

[8] D. Bates, A. Barth, and C. Jackson, “Regular Ex-
pressions Considered Harmful in Client-Side XSS
Filters,” in WWW, 2010.

[9] S. Bensalim, D. Klein, T. Barber, and M. Johns,
“Talking About My Generation: Targeted DOM-based
XSS Exploit Generation using Dynamic Data Flow
Analysis,” in Proceedings of the 14th European Work-
shop on Systems Security, EuroSec@EuroSys 2021,
Edinburgh, Scotland, UK, April 26, 2021. ACM,
2021.

[10] S. Calzavara, A. Rabitti, and M. Bugliesi, “Content
security problems?: Evaluating the effectiveness of
content security policy in the wild,” in ACM CCS,
2016.

[11] Cert/CC, “CERT Advisory CA-2000-02 Malicious
HTML Tags Embedded in Client Web Requests.”
https://resources.sei.cmu.edu/library/asset-view.cfm?
assetID=496186, Februar 2000, accessed 09.04.2021.

[12] J. Dahse and T. Holz, “Experience Report: An Em-
pirical Study of PHP Security Mechanism Usage,”
in International Symposium on Software Testing and
Analysis, 2015.

[13] Google Inc., “Google Closure Templates,”
https://github.com/google/closure-templates/blob/
master/javascript/soyutils usegoog.js#L2480,
accessed 05.06.2021.

[14] W. I. C. Group, “Explainer: Trusted Types
for DOM Manipulation,” https://github.com/WICG/
trusted-types, October 2017, accessed 09.04.2021.

[15] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius,
and E. Z. Yang, “mXSS Attacks: Attacking well-
secured Web-Applications by using innerHTML Mu-
tations,” in ACM CCS, 2013.

[16] M. Heiderich, C. Späth, and J. Schwenk, “DOMPu-
rify: Client-Side Protection against XSS and Markup
Injection,” in ESORICS 2017, 2017.

[17] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and
M. Veanes, “Fast and Precise Sanitizer Analysis with
BEK.” in USENIX Security Symposium, 2011.

[18] N. Klarlund and A. Møller, MONA Version
1.4 User Manual, BRICS, Department of Com-
puter Science, University of Aarhus, January
2001, notes Series NS-01-1. Available from
http://www.brics.dk/mona/.

[19] A. Klein, “DOM Based Cross Site Scripting or
XSS of the Third Kind,” Web Application Security
Consortium, Articles, 2005.

[20] K. Kotowicz, “Trusted types - mid 2021 report,” https:
//research.google/pubs/pub50512/, Google Research,
Tech. Rep., 2021.

[21] V. Kumar, “$20000 Facebook DOM XSS,” https:
//vinothkumar.me/20000-facebook-dom-xss/, 2020,
accessed: 16.09.2021.

[22] V. Le Pochat, T. van Goethem, S. Tajalizadehkhoob,
M. Korczynski, and W. Joosen, “Tranco: A Research-
Oriented Top Sites Ranking Hardened Against Ma-
nipulation.” in NDSS, 2019.

[23] S. Lekies, B. Stock, and M. Johns, “25 Million Flows
Later: Large-scale Detection of DOM-based XSS.”
in ACM CCS, 2013.

[24] MDN contributors, “String.prototype.replace(),”
https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global Objects/String/
replace#Specifying a function as a parameter,
July 2020, accessed 09.04.2021.

[25] W. Melicher, A. Das, M. Sharif, L. Bauer, and
L. Jia, “Riding out DOMsday: Towards Detecting
and Preventing DOM Cross-Site Scripting.” in NDSS,
2018.

[26] T. Nidecki, “Mutation XSS in Google Search,”
https://www.acunetix.com/blog/web-security-zone/
mutation-xss-in-google-search/, 2019, accessed:
16.09.2021.

[27] OWASP Foundation Inc, “XSS Filter Evasion
Cheat Sheet,” https://owasp.org/www-community/
xss-filter-evasion-cheatsheet, September 2020, ac-
cessed 23.07.2021.

[28] ——, “Cross Site Scripting Prevention Cheat Sheet,”
September 2020, accessed 23.07.2021.

[29] ——, “OWASP Top 10 – 2013 – The Ten
Most Critical Web Application Security Risks,”
https://owasp.org/www-pdf-archive/OWASP Top
10 - 2013.pdf, 2013, accessed: 16.09.2021.

[30] ——, “OWASP Top 10 – 2017 – The Ten
Most Critical Web Application Security Risks,”
https://www.owasp.org/index.php/Category:
OWASP Top Ten Project, 2017, accessed:
23.07.2021.

[31] ——, “OWASP Top 10 – 2021,” https://owasp.org/
Top10/, 2021, accessed: 16.09.2021.

[32] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and
B. Stock, “Complex Security Policy? A Longitudinal
Analysis of Deployed Content Security Policies,” in
NDSS, 2020.

[33] P. Saxena, D. Molnar, and B. Livshits, “SCRIPT-
GARD: Automatic Context-Sensitive Sanitization for
Large-Scale Legacy Web Applications,” in ACM CCS,
ser. CCS ’11. New York, NY, USA: Association for
Computing Machinery, 2011, p. 601–614. [Online].

15

https://hg.mozilla.org/mozilla-central/file/default/dom/base/nsContentUtils.cpp
https://hg.mozilla.org/mozilla-central/file/default/dom/base/nsContentUtils.cpp
https://stackoverflow.com/a/1732454
https://dom.spec.whatwg.org/#dom-node-textcontent
https://dom.spec.whatwg.org/#dom-node-textcontent
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=496186
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=496186
https://github.com/google/closure-templates/blob/master/javascript/soyutils_usegoog.js#L2480
https://github.com/google/closure-templates/blob/master/javascript/soyutils_usegoog.js#L2480
https://github.com/WICG/trusted-types
https://github.com/WICG/trusted-types
https://research.google/pubs/pub50512/
https://research.google/pubs/pub50512/
https://vinothkumar.me/20000-facebook-dom-xss/
https://vinothkumar.me/20000-facebook-dom-xss/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace#Specifying_a_function_as_a_parameter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace#Specifying_a_function_as_a_parameter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace#Specifying_a_function_as_a_parameter
https://www.acunetix.com/blog/web-security-zone/mutation-xss-in-google-search/
https://www.acunetix.com/blog/web-security-zone/mutation-xss-in-google-search/
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://owasp.org/Top10/
https://owasp.org/Top10/

Available: https://doi.org/10.1145/2046707.2046776
[34] S. Son and V. Shmatikov, “The Postman Always

Rings Twice: Attacking and Defending postMessage
in HTML5 Websites.” in NDSS, 2013.

[35] M. Steffens and B. Stock, “PMForce: Systematically
Analyzing postMessage Handlers at Scale.” in ACM
CCS, 2020.

[36] M. Steffens, C. Rossow, M. Johns, and B. Stock,
“Don’t Trust the Locals: Investigating the Prevalence
of Persistent Client-Side Cross-Site Scripting in the
Wild.” in NDSS, 2019.

[37] B. Stock, S. Pfistner, B. Kaiser, S. Lekies, and
M. Johns, “From Facepalm to Brain Bender: Ex-
ploring Client-Side Cross-Site Scripting.” in ACM
CCS, 2015.

[38] P. Wang, B. Á. Gukmundsson, and K. Kotowicz,
“Adopting trusted types in production web frame-
works to prevent dom-based cross-site scripting: A
case study,” in 2021 IEEE European Symposium on
Security and Privacy Workshops (EuroS PW), 2021,
pp. 60–73.

[39] Web Incubator Community Group, “HTML Sanitizer
API,” https://github.com/WICG/sanitizer-api, Septem-
ber 2020, accessed 09.04.2021.

[40] L. Weichselbaum, M. Spagnuolo, S. Lekies, and
A. Janc, “CSP is dead, long live CSP! On the
insecurity of whitelists and the future of content
security policy,” in ACM CCS, 2016.

[41] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter,
E. Shin, and D. Song, “A Systematic Analysis of
XSS Sanitization in Web Application Frameworks,”
in ESORICS 2011, 01 2011, pp. 150–171.

[42] M. Weissbacher, T. Lauinger, and W. Robertson,
“Why is CSP failing? Trends and challenges in CSP
adoption,” in RAID, 2014.

[43] WHATWG, “HTML Living Standard,”
https://html.spec.whatwg.org/multipage/parsing.
html#parse-error-unexpected-solidus-in-tag, April
2021, accessed 09.04.2021.

[44] F. Yu, M. Alkhalaf, and T. Bultan, “Generating
Vulnerability Signatures for String Manipulating Pro-
grams Using Automata-based Forward and Backward
Symbolic Analyses,” UC Santa Barbara, 2009-11,
Tech. Rep., June 2009.

[45] ——, “Patching Vulnerabilities with Sanitization
Synthesis.” in International Conference on Software
Engineering, 2011.

16

https://doi.org/10.1145/2046707.2046776
https://github.com/WICG/sanitizer-api
https://html.spec.whatwg.org/multipage/parsing.html#parse-error-unexpected-solidus-in-tag
https://html.spec.whatwg.org/multipage/parsing.html#parse-error-unexpected-solidus-in-tag

	Introduction
	Technical Background and Related Work
	Client-Side XSS
	Input Sanitization
	OWASP Recommendations

	Research Questions and Methodology
	System Overview
	Taint Flow Detection
	Exploit Generation
	Detection of Hand-Sanitizers
	Abstracting the JavaScript Semantics
	Modeling Browser Encoding
	Dependency Graphs

	Automaton-based Evaluation
	Implementation

	Empirical Study
	Hand-written Sanitizer Study Results
	Evaluation
	Ethical Considerations

	Hand Sanitizer Cabinet of Horrors

	Discussion
	Limitations
	Current State of Sanitization
	Generality
	Usage Patterns
	Standard Sanitizers
	Upcoming Browser based XSS Mitigations

	Key Insights
	Calls to Action

	Conclusion

