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Abstract—In the context of web applications, the most prevalent
vulnerability, according to the OWASP Top Ten, is broken
access control. As access control (AC) is implemented on the
server side, not having access to the code in live systems
limits the ability of researchers to study improper AC issues
in the wild. While several works have identified vulnerabilities
in open-source applications deployed in researcher-controlled
environments, the problem has not been studied in the wild
because of ethical and legal considerations to not leak unknow-
ing users’ data. We address this gap in research and present
the Variable Swapping Framework (VSF), the first ethically
sound and scalable black-box framework to test for improper
AC patterns in the wild. VSF’s design is the result of our in-

depth ethical stakeholder analysis and risk minimization while
maximizing benefits in vulnerability detection. At its core, it
relies on two accounts per site and swaps identifiers between
them to access one account’s resources with the other. On the
100 web apps we successfully tested, we find a total of 584
potential AC-sensitive HTTP endpoints, out of which 19 (across
7 sites) are exploitable flaws, which we disclosed responsibly.

1. Introduction

Web applications are a cornerstone of modern society.
From sharing pictures with friends, and buying products on-
line, to filing tax returns, web applications handle a plethora
of – often personal and sensitive – functionality. In any web
service where users must have authenticated accounts, it is
paramount that a user can only access (or manipulate) data
that is explicitly meant for them. Naturally, while developing
ever-growing web applications, developers might introduce
numerous mistakes that allow attackers to circumvent access
control (AC) protections. The most recent OWASP Top Ten
of application vulnerabilities lists broken access control as
the most widespread flaw [1]. While such attacks manifest
widely in the non-academic community from actual leaks [2]
to bug bounty programs [3], the academic community has
not extensively researched such flaws in the wild, to get a
wider picture.

The majority of the limited research into the space has
been conducted on open-source applications [4, 5, 6, 7, 8].
Here, the researchers deploy the application within a con-
trolled environment and add their own users to test out
different roles and features using their proposed tools to

find – mostly already reported – security issues. While this
adds value to the security community by ensuring that these
applications can fix newly reported issues, highly ranked
websites rarely use such open-source software to run their
applications. Instead, they rely on custom-developed appli-
cations, out of reach of any white- or grey-box approaches.

To test whether AC is improperly implemented, a re-
searcher has to try to access data not owned by their user. In a
recent example of the First American Financial Corp. [2], the
attacker could simply change a sequential ID in a URL to ac-
cess millions of title insurance records. However, accessing
other users’ data is both illegal and unethical, even if a “bona
fide” researcher has the best intentions at heart. Hantke et al.
[9] analyzed the ethical dilemma faced by researchers in
search of such server-side vulnerabilities. They found that
researchers shy away from doing such analyses on real
websites to avoid legal and ethical problems. This chilling
effect leads to the fact that – to our knowledge – virtually
no research exists that studies broken AC in the wild.

Hantke et al. [9] also asked ethics experts about ways
to conduct experiments to find broken AC in the wild in
an ethically acceptable way. For such scans, the interviewed
experts concluded that measurements could be conducted
ethically if the study design ensured that no third-party data
could be leaked or modified. Abiding by these guidelines
allows researchers to close the research gap while remaining
ethically sound in their measurements. In this work, we are
the first to instantiate such an ethical framework for finding
access control vulnerabilities in the wild.

We have designed a research pipeline that aims to mea-
sure the prevalence of AC vulnerabilities in the wild and on a
large scale while balancing risk to users and website opera-
tors and benefits for society at every step of the design. First,
we register two accounts with every website under test. We
then implement a leader/follower approach to browsing the
applications with the two accounts simultaneously, ensuring
mirrored, meaningful, and consistent user interactions. Next,
we filter network requests to identify HTTP endpoints with
potential broken AC. For each such endpoint, we exchange
resource identifiers between one user’s request and the other.
In case AC is not correctly implemented, this enables one
user to access the sensitive data of the other. Importantly,
given that the swapping of identifiers ensures access only
to another account we control, we can detect vulnerabilities



without jeopardizing the privacy of real users of the given
service.

In doing so, we find that out of the 100 sites we suc-
cessfully tested, 15 suffer from 30 improper server responses
to disallowed AC patterns, 19 of which lead to confirmed
vulnerabilities in seven of the sites. We disclosed all vulnera-
bilities to the affected parties. Beyond the mere confirmation
of the pervasiveness of this class of flaw in the wild, we more
importantly also set guidelines for other Web researchers to
follow in their own work. In particular, our research project
aims to serve as an example of conducting real-world server-
side vulnerability scans in the wild while adhering the ethical
best practices.

To summarize, we make the following contributions:

• We conduct a thorough analysis and discussion of
research ethics when scanning for server-side vul-
nerabilities, highlighting how to minimize risks and
how to increase benefits to the entire ecosystem.

• We design and implement the Variable Swapping
Framework for conducting ethically sound access
control vulnerability detection in the wild. We make
the code available to reviewers in https://anonymou
s.4open.science/r/improper-auth-0101.

• We report on the results of our experiments and
highlight that out of the 100 sites we tested, seven
are susceptible to at least one broken access control
bypass, threatening users’ privacy.

At the time of this writing, we have disclosed all vul-
nerabilities to the affected parties.

2. Background

In the following, we briefly outline the basic concepts of
authentication in contrast to authorization.

Authentication & Credentials. Web authentication is the
process by which a user/client proves to a server they are
who they claim to be. Web authentication is a heavily
studied subject and the security of various mechanisms
like passwords, two-factor authentication, and more complex
mechanisms are constantly re-evaluated [10, 11, 12, 13].
Once a user is logged in, their browser stores and transmits
some information that allows the server to re-identify the
user: through session cookies (initially delivered from the
server to the client and transmitted with each request by the
client), session identifiers in the URL, or through custom
HTTP headers (e.g., in the form of JSON Web Tokens).
The security of these sessions relies on the high entropy of
the tokens and other cryptographic primitives that prevent
brute-force attacks and guarantee that a valid session token is
from the legitimate user [14]. From now on, we refer to any
authentication token or parameter that proves user identity as
credentials. Credentials are not restricted to session tokens
but also include any information used to validate the authen-
ticity of the request, i.e., the request comes from a legitimate
user, even if websites do not require a login and explicit user
identity. For example, ticket numbers used to access airline

booking management, order codes for delivery services, etc.
are credentials if they are the only identifier used to grant
the client (browser) rights to access the private areas of
web services. In our work, we assume the authentication
is secure and consider the security issues of credentials and
authentication out of our scope.

Authorization & Access Control. In simple terms, while
authentication allows to answer “Who is the user?”,
authorization instead asks “Is the identified user al-
lowed to do X?”, with X being some website interac-
tion. More formally, an authorization or access control
(AC) policy is a set of rules that govern the actions 𝐿

of user/subject 𝑀 over resource/object r, i.e., given a tu-
ple (𝑀, 𝑁, 𝐿) the AC policy returns allowed or disallowed.
For example, an AC rule on amazon.com could be
“the user can only cancel their own orders” or expressed
as (user_id,order_id,cancel) is allowed only if
creator(order_id) = user_id. Defining an AC rule
for every triplet is expensive, so system designers resort
to more coarse-grained policies like discretionary access
control (DAC) – where each user has privilege over resources
they create to read, write, delete, and delegate – and the
more popular role-based access control RBAC – where users
get assigned global roles, and different roles have access to
different permissions e.g., all users with role “teacher” can
edit the grades page [15]. The HTTP specification features a
corresponding status code to indicate the fact that access to a
resource had been denied: 403 Forbidden. However, not
every server-side implementation adheres to this principle of
communicating the error in the status code (see Section 7).

There are numerous reasons why AC checks might fail
their purpose. The most common issue is a simple miscon-
figuration of an AC check, either by implementing a wrong
check or forgetting the rule altogether. This is especially
true for more complex systems, where generic systems (like
RBAC in Django) are way too coarse to handle all rules.
In Amazon for example, it is important that users only
have access to their own orders, and such explicit checks
should be implemented throughout all APIs handling re-
sources. With the growing number of APIs, the multiplicity
of resources, and the complexity of services offered, errors
become more likely to occur in covering all AC edge cases.
Another example of code logic flaws occurs when only the
initial request in a business flow is checked for authorization
while an attacker can exploit all the subsequent ones. Finally,
services might base their AC mechanisms on long hard-to-
guess IDs for private objects (e.g., order tracking IDs). If this
identifier is leaked as discussed in Section 4, it immediately
compromises requests relying on its’ secrecy, as it would not
be checked against the requesting user.

As outlined, broken AC issues are very common in
the real world [1]. In addition to the earlier mentioned
example of First American Financial Corp [2], a plethora
of high-profile reports exist. For example, an AC flaw in
Instagram allowed an attacker to access phone numbers and
user details by abusing a contact import API endpoint [16].
In NordVPN, the change of a user ID could have leaked
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Table 1. COMPARISON OF SERVER-SIDE SCANNING STUDIES ON
BLACK-BOX ACCESS-CONTROL TESTING.

In the Ethical to In-page New
Study # sites Wild Run Live Interactions Automations Vulns.

Ishida [5] 4 ↑ ↑ ↑ C,F,V 0
Chaleshtari [6] 2 ↑ ↑ ⊋ C,F,V 4
Rennhard [7] 7 ↑ ↑ ↑ I,C,F,V 0
Deepa [8] 5 ↑ ↑ ⊋ F,V 0

Our work 100 ⊋ ⊋ ⊋ A,F,V 19

Pipeline Stages: A: account management, I: Defining interaction protocol,
C: collecting requests, F: filtering requests and sending candidates, and

V: flagging improper AC responses.

the users’ payment histories [17]. A similar issue had been
detected for TikTok ads, which would have allowed deleting
support tickets using an order id [18]. Lastly, an attack chain
in Uber’s backend portal would have leaked names, phone
numbers, and other user-related information to anyone [19].
The impact of these vulnerabilities is significant, affecting
both companies’ finances and user privacy – especially given
that these companies serve millions of users. These examples
underscore the importance of research in this area.

3. Related Work

Server-side issues are challenging to study on a large
scale. Except for open-source software, the backend code
is typically not accessible to the researcher, limiting the
visibility of the available server-side endpoints alongside
implemented security checks, and hindering the use of static
analysis tools. Instead, researchers must treat the server as
a black box and learn about it by interacting with it dynam-
ically, which naturally comes with its limitations. Without
access to the backend code, researchers cannot guarantee
coverage of the entire codebase and only guess code paths
from available frontend code, leading to situations where
they can only hypothesize the causes of certain behav-
iors [20]. If specific website behavior is restricted behind a
login, experiments become even more complex and resource-
intensive due to the need for authentication [21, 22, 23, 22].
In addition to the technical challenges, ethical considerations
and legal risks to further complicate such studies [9, 24].

Specifically, testing for access control involves sending
requests to access other users’ pages and resources. Fac-
ing the daunting technical and ethical obstacles, the few
prior studies touching on access-control vulnerabilities only
evaluate their frameworks and techniques over a few open-
source applications [5, 6, 7, 8]. On top, none of the prior
work performs a proper ethical analysis of their frameworks.
Deepa et al. [8] and Ishida et al. [5] implement frameworks
where they collect requests from one user, automatically
extract resource identifiers, modify the parameter values (at
random or by appending a constant character, respectively),
and send the request with the new parameter value. Using
these tools on live systems carries the risk of potentially
leaking an external user’s data through the API endpoint with
compromised AC. Both tools do not catch any new vulnera-
bilities. In contrast, Rennhard et al. [7] and Chaleshtari et al.
[6] inadvertently reduce the framework’s risk by including

two users per visit and swapping parameters strictly between
them. However, Chaleshtari et al. [6] requires a pre-written
test case and manual authentication for the users, which
is not scalable. Still, they managed to discover four new
vulnerabilities in the two open-source apps they evaluated.
Rennhard et al. [7] is the only work that strictly focuses
on testing AC violations and chooses to fully automate the
process from visiting the sites to flagging vulnerabilities.
At each stage – visitation, filtering requests, generating
candidates, and validating vulnerabilities – they implement a
series of heuristics and pattern-matching techniques, similar
to ours, to extract resource identifiers, and flag server re-
sponses to forged requests as vulnerabilities or not. However,
they resort to only evaluating GET requests to prevent state-
altering POST requests which would compromise their setup.
Credentials and authenticated sessions are fed manually to
their framework. Our work differs from prior work in two
main aspects (Table 1): (1) we design all framework com-
ponents with ethical considerations in mind, which allow us
to (2) run directly on live sites and in the wild.

4. Threat Model

In this work, we are interested in threat models that
exploit flawed server-side AC policies to gain unintended
privilege over some or all user-accessible permissions or
resources in a web app. We focus on attacks where the
attacker has their own account and abuses AC policies to gain
access to or manipulate a victim user’s resources by altering
request parameters [25]. The general pattern for such attacks
means that an authenticated user gains access to a sensitive
resource belonging to another user by exchanging the object
identifier of their own resource with that of the victim. In
essence, they swap out the genuine resource identifier with
the targeted one. Such identifies may be changeable even by
a layperson, e.g., by editing the URL bar or sending requests
from the browser dev-tools [26, 27]. If such an authorization
vulnerability exists, the attacker merely has to ascertain the
object or resource identifier to launch the attack.

Within our work, we consider three AC attacker profiles
of interest that vary from weak to strong:
Opportunistic Brute-force Attacker. This attacker aims
to get access to any resource available through a web-
app endpoint. They do not target a specific user. The at-
tacker varies the resource identifier in the endpoint until
the endpoint request returns a successful response, signaling
a valid identifier, if the website endpoint has broken AC
permission checks. The practicality of this attack depends on
the complexity of the resource identifier. For example, if the
resource here is a file and identified through its index in the
database: file1, file2, etc.; then, the attacker only has to
enumerate over possible indexes until they get a valid ID. In
contrast, if files use high-entropy UUIDs, the attacker cannot
find a pattern to guess valid file identifiers and resorts to an
expensive brute-force attack. Facing an opportunist attacker,
the security of the system depends both on the entropy of
the identifier and the validity of the AC policy.



Opportunistic Reconnaissance Attacker. Similar to the
brute-force attacker, this attacker also aims to compromise
arbitrary users and their resources. Unlike the brute-force
attacker, this attacker does not try random values of the
object identifiers, but mines valid identifiers from public
repositories. Examples of such repositories include web
archives storing public pages containing various publicly
visible user resources (e.g., user posts), discussion forums,
GitHub issues where users could share logs and requests for
debugging, public screenshots on social media, and leaked
user URLs from browser extensions (e.g., URLscan.io [28]).
Many methods already exist to automate the extraction of
these identifiers [29]. In this setting, identifier entropy does
not give any security guarantees. Instead, against this at-
tacker, the security of the system depends both on the public
visibility of the identifier and the validity of the AC policy.
Targeted Attacker. The strongest attacker, that we consider
as baseline, aims to compromise a specific victim user.
They can use any means possible to extract the relevant
resource identifiers by using prior techniques or by inter-
acting directly with the victim. This includes a large suite
of established attacks to extract the vulnerable identifiers,
such as social engineering (e.g., convincing the user to
share certain URLs), over-the-shoulder attacks, etc. [30]. We
distinguish this attacker from the account-takeover attacker,
as the targeted AC attacker (1) requires less information to
launch the attack (e.g., only resource identifiers) and (2) does
not need to impersonate the victim user (by logging in with
their credentials) to access/modify their resources – avoiding
authentication security measures (e.g., e-mail notification on
logins). In this setting, we cannot rely on the complexity
or privacy of the identifiers to argue about the security of
endpoints to AC violations; the only guard is implementing
a correct AC policy.

5. Research Ethics

This project analyzes access control (AC) issues in live
Web systems, i.e., investigating the behavior of server-side
code. Server-side analyses are often considered method-
ologically challenging because these experiments leave the
controlled laboratory environment and may impact systems
involving various stakeholders. Disclosing vulnerabilities in
live systems can also lead to challenging situations [31].
A recent paper [9] explored the feasibility of server-side
experiments, including one related to AC experiments, in
discussions with research ethics committee members. They
concluded that if the experiment design is well considered,
such experiments can be ethically acceptable.

In light of this, we conduct a stakeholder analysis as
recommended by the Menlo Report [32] and Kohno et al.
[31] to systematically evaluate the ethical implications of this
project and come up with guidelines to adhere to throughout
the project. Besides being a guide for responsible execution
of our project, we also believe it can serve as an example
framework for other projects, demonstrating how to incor-
porate ethical considerations in the experiment design.

5.1. Stakeholder Analysis

When investigating AC issues, three main stakeholders
play a role: the end users of the website under analysis, the
website owners or operators, and the research team itself.

End Users. End users are those who interact with the web
service. Although they are only passively involved in the
experiment, they still face potential risks. A poorly designed
AC experiment could expose user data to the researchers or,
modify them in the worst case. Activities that interact with
the end user, such as unsolicited messages, can also nega-
tively impact the end user. If the scans are too aggressive,
they may also affect the performance and availability of the
web service, leading to a negative end-user experience. We
discuss measures to minimize and, ideally, eliminate these
risks in the next section.

Despite these risks, we believe the benefit to end users
is significant. Each vulnerability that is discovered by the
research team and fixed by the website operators improves
the web service’s security and reduces the risks of end-user
data being leaked. By minimizing the risks above, we believe
the overall benefit to end users outweighs the potential
downsides, as potential data leaks could easily affect all
website users.

Website Operators. Unlike end users, website operators are
actively involved in the experiment. For that reason, it must
be discussed whether and how to seek their consent, and if
not, to justify why [32]. From AC experiments, operators
may be affected by the additional traffic, which can lead
to higher costs. In the worst case, their website’s stability
suffers from the additional traffic. Creating fake accounts to
test AC issues can add additional administrative overhead.
Furthermore, exposed user data due to a poorly designed
experiment may harm the operators in the form of stress and
additional work they need to put into triaging the incident
and informing the affected users. Public disclosure or naming
the web service in publications could also pose a risk of
reputational damage. The benefits for website operators are
substantial. If a vulnerability is identified and disclosed
responsibly, it helps operators understand and address AC
weaknesses on their site. Ultimately, this helps to improve
their service’s security, reducing the risk of costly data
breaches.

Researchers and Team Members. Finally, the research
team conducting the experiment is also a stakeholder. While
all team members have consented to conduct this research,
it is still necessary to consider and minimize potential risks
they may face. As with any web-based research, there is a
possibility of encountering content that could be uncomfort-
able. Additionally, researchers may face legal threats from
parties who do not approve the unsolicited web scans.

The benefit for the research team is eventually a contribu-
tion to the academic community through the publication of
their findings, which will raise awareness and understand-
ing of AC issues. Furthermore, like other end users, the



researchers benefit from any positive security improvements
resulting from this work.

5.2. Ethical Guidelines

To address the list of potential risks identified in the
previous analysis, we discuss each risk in the following
and propose measures to incorporate into our framework for
detecting server-side access control vulnerabilities.

Data Leakage and Manipulation. End users and website
operators could both be negatively affected by leaked or
manipulated data. In their study, Hantke et al. [9] interviewed
(among others) research ethics committee (REC) members
for major security conferences. As a result of their discussion
with the research team, the REC members suggested that a
good way to avoid exposing end-user data is to experiment
only with accounts owned by the research team. This way,
any potentially leaked or updated data would only affect the
respective other researcher-owned accounts. The framework
must thus ensure that it interacts solely with researchers-
controlled accounts. While it is possible that scans may view
publicly available user information, the framework ensures
that no sensitive data is accidentally disclosed. In addition
to the technical measures, all researchers who are involved
in the vulnerability analysis agreed on a self-commitment
declaration to not use the gained knowledge to act outside
the experiment context.

Fake Accounts. As mentioned above, the framework ensures
to only test with researcher-associated accounts. Due to the
administrative overhead such fake accounts could impose
on website operators, a balance must be maintained in the
number of accounts created and required. We decided to
create two accounts per site that have recognizable test
account names.

Informed Consent. As mentioned earlier, it is essential
to discuss whether and how to seek informed consent of
the website operators. Ideally, researchers would request
consent from every web operator whose website is tested.
However, research has shown that even vulnerability notifi-
cations receive a very low response rate [33], and we expect
even lower rates when asking for consent limiting the study
to a very small and potentially biased scale. According to
the Menlo Report [32], research that would otherwise be
infeasible can be performed without an informed consent
process but must be well justified. This is the case for our
research, which aims to design a framework for a scalable
study that is indeed infeasible if operator consent is required.
Hence, we have chosen a study design in which we do not
acquire operator consent. To ensure this design aligns with
current research ethics, we consider ethics in every research
stage to minimize risk for all involved parties and have
obtained approval from our ethical review board (ERB).

To still give the operators the right to withdraw from our
research [32], the framework should include information on
how to withdraw (in our case, in an HTTP header) and use
one fixed IP address that can be blocked.

Website Resources and Stability. An immense usage of
resources or impairment of the website’s stability due to web
scans would have a negative impact on end users and website
operators. To minimize this risk, the framework should only
send a normal amount of valid Web requests, similar to
those made by the typical user. Additionally, we decided that
every request that is automatically sent with our framework
needs to be successfully performed manually by one of our
researchers in the form of visiting the site. For unexpected
responses, e.g., a 500 Internal Server Error, during a later
automated stage, there must be safeguards in place to react
accordingly. In our framework, we see such responses in the
database so that we can investigate the difference further and
verify the page’s availability.

To avoid additional costs or impacts on the website’s
stability with too many requests, the experiment framework
should enforce request limits per site, ensuring that the
generated traffic remains negligible compared to the already
existing noise on the Web. We decided to limit the requests
to 16 per HTTP endpoint.

Alarms. Same as with the resources, potentially triggered
alarms could put stress on web operators. At the same time,
any alarm that leads to the earlier detection of an existing
vulnerability – even before we disclose it – is a good alarm,
as the vulnerability should not exist in the first place. Such
vulnerabilities, if exploited by adversaries, could lead to
mandatory reporting under privacy regulations (e.g., GDPR),
causing even more extra work or even financial penalties for
the operators [9]. By ensuring that the scanning framework
only uses researcher-controlled accounts and avoids leaking
any sensitive data, the risk and mentioned additional work
are minimized for the operators. Furthermore, a request
limit implemented in the framework lowers the number of
potential alarms.

Responsible Disclosure. The key benefit that all stakehold-
ers get from this work is the identification and remedia-
tion of detected web security issues if disclosed properly.
Therefore, a discloser strategy must be considered before
the experiments begin and be balanced with the timeline of
the experiment. Issues disclosed too early could influence
measurement results (e.g., operators fix the same issue for
multiple of their sites in our dataset), while issues disclosed
later could raise the risk of exploitations by malicious actors.
Therefore, we decided to prepare our disclosure communica-
tion during the execution of the experiments and send them
for every verified vulnerability immediately after all scans
are finished. The disclosure emails must contain enough
resources and recommendations to minimize the additional
work that web operators do.

Uncomfortable Content. To protect research team members
from viewing content they feel uncomfortable with (respect
for persons [32]), we ensure that team members have the
option to skip a website at any time. In such a case, the lead
researcher would review and evaluate the skipped site.



Legal Issues. Legal risks always exist for a research team
conducting this type of research. We have carefully consid-
ered our experiment pipeline and are confident we do not
violate any legal regulations, as our testing is only limited
to two researcher-controlled accounts, thereby avoiding the
classical brute forcing of IDs and parameters. One exception
is creating test accounts, which may still violate some web-
sites’ terms of service. We accept this risk as appropriate, as
we will not pursue further action if operators block or delete
our accounts. To further minimize legal risk for individual
researchers, we run all experiments from our institution’s IP
address rather than from private IPs.

Summary. Broken AC vulnerabilities can not only cause
financial loss to the operators but also jeopardize the privacy
of millions of users, as evidenced by the previously men-
tioned examples. As Hantke et al. [9] noted in their work,
ethics committee members, as well as the Web operators,
were generally confident about such kind of research when
conducted responsibly. Additionally, we carefully studied
and discussed the recommendations from relevant ethics
research publications [32, 31], and requested feedback from
our ethical review board (ERB). They concluded that “[t]here
are no ethical concerns against the implementation of the
proposal”, however, suggested that the involved researchers
sign a self-commitment declaration promising to not “use the
gained knowledge to act outside the experiment context”.
Additionally, they mentioned that all involved researchers
should be made aware about potential legal actions that ven-
dors could take and the measures we have implemented to
mitigate these to enable an informed decision about whether
they wish to participate in the research. We have followed
both these recommendations.

In summary, considering the significant risks associated
with potential data leakages through improper access con-
trol, it is paramount to identify such flaws and inform the
operators to have a positive outcome on the security of
the entire ecosystem. Thus, we believe the potential risks
to the stakeholders outlined within this section are signifi-
cantly outweighed by the benefit stemming from finding such
flaws; under the assumption that the research framework is
designed in a way to minimize the risks.

6. The Variable Swapping Framework (VSF)

Without access to backend source code, evaluating
whether web endpoints (GET requests to fetch pages and
GET or POST API calls) implement sound AC in a black-
box manner is not straightforward. First, studying AC issues
is only relevant to websites with logged-in user accounts
that can own private resources (e.g., profile pages, files, etc.).
Second, challenging the server’s AC policy requires attempt-
ing to request other users’ resources within a user’s session.
Throughout this section, we refer to requests which which
aim to find improper AC checks as probing requests. While
successful requests indicate a faulty AC policy, they might
cause an ethical violation by revealing other users’ private
data. As stated earlier, to avoid compromising external users

in our study, we must only target users we control, meaning
we need at least two users per website. As managing all the
above by hand is not scalable, we design the VSF framework
which automates most parts of the experiments, leaving
only peripheral human involvement. To efficiently manage
user accounts and instantiate authenticated website sessions
– in a semi-automated fashion – we adapt the Account
Framework by Rautenstrauch et al. [21] which distributes
fresh logged-in sessions to our automated browser agents.
To generate probing requests ethically, we collect pairs of
requests from two fake users logged in to two browsers –
a leader browser controlled by the researcher who performs
usual user interactions and a follower browser that mirrors
actions from the leader. We then introduce an automated
pipeline to match request pairs and extract AC parameters
(user credentials, resource identifiers, etc.). The VSF then
constructs probing requests by only swapping the resource
identifiers between requests while keeping the same user
credentials. We deploy automated browser agents to send
these requests and record the responses in a central database.
Finally, we review and analyze flagged requests to manually
confirm vulnerabilities.

6.1. Semi-Automatic User Accounts Management

We integrate the Account Framework [21] to store and
manage the user accounts for the various websites. As a first
step, we perform manual registration through the provided
assisted setup to create two user accounts per website keep-
ing track of e-mails, usernames, and passwords. All users
share one of three e-mails we control (one Gmail account
and two Proton [34] accounts). Rautenstrauch et al. [21]
used the created accounts in a fully automated fashion by
crawling the sites through the following links. They did not,
however, interact with the page further (e.g., triggering forms
or buttons). In contrast, we must perform certain unskippable
actions (e.g., filling out the profile information on the first
login) in both accounts. For this, we develop a protocol to
ensure that our two accounts are in the same state before we
start interaction with the leader browser.

The Account Framework then automates the rest of the
process to serve fresh sessions for the Variable Swapping
Framework (Figure 1), by automating any required logins
for expired sessions. We refer the reader to their paper for
a detailed explanation of the inner workings of their setup.

6.2. Manual Mirrored Website Visit

For each endpoint to evaluate AC behavior, we need
examples of accepted resource identifier values for both
users (e.g., folder ID), so that we can later swap between
users (Section 6.4) to ensure only researcher-controlled is
accessed. Effectively, we must collect an example request
for the site endpoint from both user sessions. Naturally, we
cannot claim to exhaustively evaluate all endpoints for a
given site; we rather restrict ourselves to covering the same
set of endpoints between two sessions to have the necessary
example requests in both cases.
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Figure 1. The Variable Swapping Framework (VSF) Simplified Workflow

To efficiently explore available endpoints and collect
two examples from two distinct user sessions, we design
a mirrored browser setup, as shown in Figure 1 (1), ma-
neuverable by a single researcher. The researcher controls
one browser, labeled leader, and navigates the website with
the first user account (Alice). A second browser, labeled
follower, automatically mirrors each interaction (clicking,
filling inputs, navigating URLs) produced by the leader,
but with the second user account logged in (Bob). Intu-
itively, synchronizing the browsers’ interactions guarantees
a higher likelihood of generating two examples of each
discovered endpoint from the two user accounts. We collect
request/response pairs from each browser in a database for
later stages of the experiment. In case the follower browser
falls out of sync, the researcher can directly interact with it
to bring it back to the same state as the leader browser. We
elaborate more on the implementation details of this setup
in Appendix A.1.

6.3. Filtering Requests into Probing Candidates

This step’s goal is to minimize the number of irrelevant
requests and useless swapping experiments reducing the
analysis workload and the network impact on the tested
server. We disqualify requests and probing candidates in
three stages, visible in Figure 1 (2):

I. Pre-filtering Requests. Since we focus on authorization
issues, we can eliminate many requests that do not involve
any AC pattern. First, we drop all requests to third-party
domains that match popular Ad-blocker list, EasyList [35],
as they are likely Advertisement and Tracking Services (ATS)
which are not relevant to our study – using braveblock
Python library [36]. Next, we only include requests to
resources that may contain sensitive information, such as
XHR, HTML, XML, TEXT, JSON and IMAGE. In turn, we
excluded mostly likely static content like CSS. Then, we
design a Regex filter list to only allow requests with any
form of authentication (e.g., cookies, authentication header,
authentication keyword in the request body, etc.). Finally,
we drop identical request/response pairs in both sessions, as
surely, they do not include any user-specific credentials.

II. Matching Requests from Visit Pairs. Multiple fac-
tors can cause request sequences to be misaligned between
browser sessions: JavaScript randomness can cause certain
requests only in one of the sessions, and timing differences
can cause requests to be in a different order, randomness in
server response between users can trigger slightly different
control flows, etc. We cannot simply assume that the 𝑂

𝐿𝑀

request from Alice’s session and the 𝑂
𝐿𝑀 request from Bob’s

session are examples of the same endpoint. To match request
pairs, we design a heuristic that computes the distance
between requests of two distinct browser sessions based on
the URL path similarity. We compute URL path similarity
between URL 𝑃 (e.g., /api/profile/alice) and URL
𝑄 (e.g., /api/profile/bob) by counting the number of
matching segments at the same index, sim(𝑃, 𝑄) = ∑

𝑁 I𝑂𝐿=𝑃𝐿

where I is the indicator function. Given two request se-
quences RA = {𝑅𝑂

𝑁 } and RB = {𝑅𝑃
𝑁 }, We consider the

matching request from RB for 𝑅
𝑂
𝑁 to be the request having

the smallest distance with it:

match(𝑅𝑂
𝑁 ,R

B) = arg max
𝑄

sim(𝑅𝑂
𝑁 , 𝑅

𝑃
𝑄 )

If the shortest distance is larger than a fixed threshold
𝑆𝑅, the framework disregards the pair, otherwise, the pair
is considered a viable probing candidate and is handed over
to “candidate generation”. We experimentally determine that
𝑆𝑅 = 3 yields the best matching results by manually tuning
it on requests from a pilot experiment.

III. Probing Candidate Generation. We aim to generate
a request to an endpoint 𝐿 that takes credentials from one
user and the resource identifiers from the others to detect
a potential AC flaw. We refer to the user providing the
credentials as 𝑇𝑆: the associated AC rule is (𝑀𝑆, 𝑁𝑆, 𝐿), where
𝑁𝑆 is the resource identifier for this user, and the associated
request-response pair is 𝑅𝑆. Similarly, we refer to the user
providing the resource identifier as 𝑇𝑇 with associated AC
rule (𝑀𝑇 , 𝑁𝑇 , 𝐿) and request-response pair 𝑅𝑇 .

First, we design a request templating process (Figure 2):
(1) Given the request information from 𝑅𝑆 (URL path, GET
query parameters, headers, and POST body if any) and a
set of variable values present in the request (e.g., folder
identifiers), we can construct a “request template” where
each instance of the parameter value is replaced with a regex



GET example.com/profile/alice2222/posts?post=122

HEADERS: ...
BODY: { "user": "alice2222"  }

GET example.com/profile/<user ID>/posts?post=<post ID>

HEADERS: ...
BODY: { "user": "< user ID>" }

VARIABLES: user ID = alice2222, post ID = 122

GET example.com/profile/bob1111/posts?post=133

HEADERS: ...
BODY: { "user": "bob1111" }

VARIABLES: user ID = bob1111, post ID = 133

Extract 
variable 
values

Generate 
request 

template

GET example.com/profile/bob1111/posts?post=122

HEADERS: ...
BODY: { "user": "bob1111" }

Create request
with swapped

post ID

swapping values

reference
values

  request 1 

  request 2 

  request template 

  probing request  

1

2

3

Figure 2. Example of generating a probing request from visit request pairs

pattern; (2) Using this template, we can extract the values
for the same set of variables for the other user’s request
𝑅𝑇 ; Finally, (3) knowing both sets of variable values for the
variables, we can plug them back into the request template
to generate requests 𝑅𝑈 with swapped resource parameters
for disallowed AC examples (𝑀𝑆, 𝑁𝑇 , 𝐿). You can find more
about how we compare requests in Appendix A.2.
Identifying request variables. Automating the templating
process still requires enumerating the list of variables from
each request. One option is to note them manually, which
we offer on the framework through an interface for ad-
vanced uses. However, this approach does not scale, requir-
ing additional manual labor. Thus, we design an automated
heuristic approach to identify parameters worth swapping
(i.e., likely AC parameters) according to the parameter
keys and value formats. For example, UUID v4, which
could be relevant AC parameter, has distinct value formats
xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx where
x is a hexadecimal digit and resource identifiers often
include *_id in their name. We maintain allowlists and
blocklists of parameter names and values which we curate
manually from a pilot experiment. You can find more details
about the heuristic patterns in Appendix section A.3.

Finally, we can generate multiple probing requests if
the reference request has many resource identifiers. From
the set 𝑈 of available identifier, the candidate generation
module selects a subset of variables 𝑈𝑉 to swap based on
the heuristic described previously. Then, it can generate all
2 |𝑊𝑀 | combinations. To avoid overwhelming the server and
keep the time-spent per site short, we put a hard limit of 16
candidates per endpoint. In our experiments, we found that
this limit was rarely reached (only 3% of probing requests).
This limit can be easily adjusted in the future to fit the needs
of the study.
Heuristic Evaluation. We evaluate the performance of the
filtering module over 3,000 request-pairs randomly selected
from all collected request-pairs (16%). We manually go
through each pair and label whether it contains swappable
resource identifiers and would be a valid probing request or

Table 2. CONFUSION MATRIX FOR THE PREDICTIONS OF THE PROBING
CANDIDATE FILTERING HEURISTIC.

True YES True NO

Predicted YES 203 297
Predicted NO 83 2,390

YES: the request-pair is AC-related and should be probed, NO:
request-pair not interesting to probe for.

not. In Table 2, we show the confusion matrix between the
labels predicted by the filtering heuristic and those manually
labeled. As mentioned in Section 7, the heuristic favors false
positives to try to cover as many examples as possible, 297
candidates or an 𝑉𝑊𝑅 = 59%, as we provide relaxed pat-
terns. However, we can see that the number of false negatives
is comparably smaller, with only 83 or an 𝑉𝑋𝑅 = 3.3%. By
extension, the heuristic achieves a precision of 40% and a
recall of 71%. The regex patterns used for the heuristic can
be easily updated to better fit the examples of future studies.

6.4. Sending Probing Requests

The key requirement of the swapping module is ensur-
ing that the difference in server-side responses to probing
requests compared to visitation requests is only due to the
swapped parameters. The main factor that can cause the
server to respond differently besides the swapped parameters
is expired security parameters: Authentication credentials
(e.g., session cookies, JWT tokens, etc.) can expire if the
swapping experiment is sufficiently delayed, causing the
server to respond with an unusable authentication error
response. We guarantee this parameter freshness, by running
a live swapping experiment in parallel to the visitation. On a
rolling basis, the swapping worker fetches probing requests
generated by the prior module (Section 6.3). This approach
guarantees that short-lived session parameters – like CSRF
tokens – remain valid and do not influence the response
to probe requests. Still, live swapping can influence the
visitation session if the requests succeed (e.g., deleting a user
folder), which may be confusing to the researcher running
the experiment. In our measurement, though, no such situa-
tion arose. We intentionally send all of the probing requests
outside of a real browser with cURL [37], to allow us to
send arbitrary headers (which would cause CORS-related
preflight requests if done from within page JavaScript).

6.5. Manual Candidate Validation

We use the GUI viewer to understand whether (1) suc-
cessful probing requests (with status code 200) present ac-
tionable vulnerabilities and (2) failed probing requests failed
due to AC policy violation or orthogonal reasons.

Ideally, we expect the response 𝑅𝑈 to the swapped AC
rule (𝑀𝑆, 𝑁𝑇 , 𝐿) to return an HTTP error code. As such,
successful responses to probing requests are markers of
likely vulnerabilities. To validate whether such candidates
violate the expected AC policy, we perform a series of



manual checks: (1) we contextually determine whether the
swapped parameter (𝑁𝑆 ↓ 𝑁𝑇 ) is a private resource identifier.
If yes, (2) we compare response bodies: if 𝑅𝑈 is closer to 𝑅𝑇

(which shares the same resource identifier) than 𝑅𝑆 (which
shares the same credential), we consider it a violation of
the AC policy, as user 𝑀𝑆 was able to access 𝑀𝑇 ’s resource
𝑁𝑇 . In case no response body is available (for POST requests
for example), we consider successful requests over private
resource identifiers a violation of the AC policy. While this
can be automated [7], we manually confirm that the improper
authorization is an exploitable vulnerability, so that we do
not notify operators incorrectly.

7. Evaluation

We use the framework described in Section 6 to scan
web-app endpoints for AC vulnerabilities and explore the
reactions of servers to mismatching AC requests. In the
following sections, we present the results of our experiment
from selecting the websites that we can test, to performing
the visits and collecting requests, and finally generating and
triggering probing requests that uncover serious vulnerabil-
ities. In Table 3, we provide an overview of the relevant
counts of websites and requests throughout the various stages
of website selection and the VSF pipeline. In it, we can
see the reduction in the number of involved websites and
requests as they become subject to the technical and ethical
constraints we impose and the scope we aim for. This
distillation of websites and requests through the automated
process helps reduce the number of endpoints to investigate
from 60K endpoints collected in Section 6.2 to 584 in
Section 7.3.

7.1. Website Selection

While all other stages scale to any number of websites,
we had to constrain the number of visited sites due to the
manual load to register accounts and visit websites. We still
attempt to cover sites relevant to users by sampling from the
CrUX dataset [38]. The Account Framework [21] detected
531 websites across the 0-5K range as having login and
registration pages, of which we could create account pairs
to 110 websites between Aug. 2024 and Oct. 2024.

7.2. Testing Web Endpoints in the Wild

This section showcases the results obtained from visiting
live websites with the VSF. To demonstrate the design and
utility of our framework, we decided to only apply it to
100 sites on which we could establish two sessions. As
we discuss in the following section, 10 websites failed for
various reasons, hence we registered accounts with a total
of 110 sites for experiments.

Visiting Websites and Interactions. We intentionally do
not attempt to automate website visitation and interaction.
This manual step ensures unintended unethical interactions

Table 3. GENERAL EXPERIMENT STATISTICS FROM VISITATION TO
PROBING REQUESTS

Website Statistics

Websites with registration and login forms 531
Websites with two accounts 110
Successfully visited websites 100
Websites with probing candidates 90

Visitation Request Statistics

Total requests collected 536,973
Unique endpoints collected 60,153 (11.2%)

First-party requests 24,352 (40.4%)
Third-party requests 35,801 (59.6%)

Unique requests dropped by ad blocker 27,609 (45.9%)
Pre-filtered and matched endpoints 7,311 (12.2%)

Probing Request Statistics

Unique request to swap 1,566 (2.6%)
Total probing candidates 6,830
Successful probing candidates 6,096
Unique probing URL templates 584
Endpoints improperly handling disallowed AC 30
Vulnerabilities 19

Vulnerability Breakdown By Adversary (Section 4)

Opportunistic brute-force attacker 6
Opportunistic reconnaissance attacker 13
Targeted attacker 6

cannot occur (e.g., interacting with a real user). It would
be challenging to give ethical guarantees without tightly
controlling the interaction footprint of our users by hand
or sacrificing interactions altogether like prior attempts [7].
Visitation Guidelines. For each website, we enforce a clear
visitation protocol. In essence, we instruct the researchers
visiting the website to perform interactions that would (A)
expose AC-related endpoints (e.g., navigating/editing the
user profile, manipulating user-owned objects, liking/book-
marking public resources, etc.) without (B) compromising
the ethical bounds (e.g., not reporting other users). For a full
protocol description, we refer the reader to Appendix B. All
subsequent stages are automated and ensure that parameters
making it to the probing requests are only pertinent to one
of our two users, not harming any third-party user.
Failed Visits. Out of the 110 websites we visited, we
marked 100 as successful. Out of the 10 failed visits, three
websites, marked as logged in by the Account Framework
(Section 6.1), would not provide logged-in sessions during
visitation. Further investigation shows our accounts were
either blocked and required an account recovery process or
bot detection invalidated our sessions. Three other websites
failed because we could not have any meaningful interaction.
We further outline interaction limitations in Section 8.2. The
remaining websites failed because the web pages were too
dissimilar between users or very unstable. The three main
reasons for session divergence between users are (1) AB-
testing where a different user interface is selectively shown
to one portion of the users e.g., how the share page responds
on notion.com, (2) randomized content in the landing
page e.g., images shown on pinterest.com, and (3) dif-



ference in user account states e.g., one user getting a random
achievement on boardgamearena.com. While the VSF
falls back to clicking in the same position of the page if
the interaction target is missing from the follower browser,
differences in UI layouts will quickly lead both browser
sessions to become out of sync. Finally, we note some
websites, primarily adult content websites, that implement
aggressive advertisement techniques by opening many new
tabs at every click, which renders a coherent visit infeasible.

Website and Interaction Diversity. For scalability, our frame-
work should handle a wide range of website categories
and interaction patterns. After visiting a large portion of
websites, we identified a finite number of popular high-
level interaction sequences that we adopted: (A1) editing
the profile page information of the user; (A2) navigating
all private sub-pages, e.g., the user’s favorite videos list;
(A3) opening the notifications list; (A4) interacting with any
messaging service only between both our users, e.g., opening
inbox, sending a message, etc.; (A5) creating/updating/delet-
ing user-owned objects, e.g., adding a playlist, renaming it,
or deleting it; (A6) making associations with public objects,
e.g., liking an image, bookmarking an article, adding a video
to our playlist, temporarily following a user etc., (we avoid
any action that harms other users); (A7) interacting with
3rd-party services such as payment services reversibly, e.g.,
we enter the checkout page but never proceed to payment.
These interaction classes allow us to group websites into
distinct categories, which can be useful for future attempts
at automated interactions: 41 media gallery web sites, e.g.,
video pages, adult pages, image galleries etc., focusing
primarily on user-gallery interactions [A1,A2,A6]; 13 news
or articles web sites, where AC-relevant interactions are
minimal [A1,A6]; 12 social network web sites offering
the largest diversity of interactions including user-to-user
interactions [A1,A2,A3,A4,A5,A6]; 12 product gallery web
sites limited to user-to-product interactions and cart ser-
vices [A1,A6,A7]; 11 content editor web sites, e.g., PDF
editors ilovepdf.com, image conversion cutout.pro,
course-taking w3school.com etc., where users often up-
load private files and/or manipulated objects private to them
[A1,A2,A3,A5]; seven information retrieval web sites, e.g.,
search indices like britannica.com, with rare meaning-
ful AC interactions [A6]; lastly four file manager web sites,
e.g., mediafire.com, github.com, etc., with many
high-impact AC interactions [A1,A2,A5]. Since the VSF
mirrors interactions at the atomic level of clicks and form
inputs, we can see that it can handle most of the web easily.

Uncovering Testable Site Endpoints. Given the black-box
nature of the experiment, a prerequisite for the primary goal
of the VSF is triggering and exploring as many site endpoints
as possible, collecting two occurrences of the endpoint from
both user sessions, to use in the swapping experiment.

First, to argue about the likelihood of having two exam-
ples of any request, we need to measure the overlap between
requests across the pair of visits to the website. Removing
all requests blocked by an ad-blocker (Section 6.3), we take

Figure 3. Request overlap and Jaccard similarity of requests observed in
mirrored visit pairs to the same website.

the pairs of request URL sets R𝑂 and R𝑃 and compute the
overlap coefficient and jaccard similarity:

overlap : |R𝑂 ↔ R𝑃 |
min( |R𝑂 |, |R𝑃 |)

Jaccard : |R𝑂 ↔ R𝑃 |
|R𝑂 ↗ R𝑃 |

Our results in Figure 3 show that 75% of visit pairs
have a Jaccard similarity higher than 61% and more than
90% overlap. The high overlap confirms the success of the
mirrored browser setup. The larger spread in Jaccard simi-
larity compared to the concentrated high overlap indicates
that one of the two visits observes more varied requests
than the other. We attribute this to two reasons: (1) in some
cases, we need to perform interactions only on the follower
browser if the browsers lose synchronization, and (2) the
leader browser closes slightly before the follower which
causes more interactions to be recorded on the follower.

Second, in our threat model (Section 4), we expect
adversaries who only have black-box access to the server,
to register as a user, and explore vulnerable site endpoints
by interacting with the website in manners similar to ours.
As such, we need to characterize the nature of the requests
we encounter using the VSF to illustrate the advantage of
the adversary and the coverage of our method. Due to our
ethical constraints (Section 5), we refrain from comparing to
other web-testing tools on production websites [5, 6, 7, 8]
and include a static crawler (a crawler that only navigates
to sub-pages from page links without interacting with the
content) as a baseline, by estimating its performance from
portions of our visits before any interaction. This estimation
is an upper bound on the performance of static crawlers,
as we must include pages that result from user actions –
unreachable to a typical static crawler. We only perform
this analysis over one of the browser sessions per visit.
Our results in Figure 4 show that interactive crawls cover
three times more unique requests (31,457 request) and two
times more unique domains (2,380 domain). We expect
most of the relevant endpoints to be first-party requests
(Section 6.3 II). The breakdown also shows that the inter-
active visits with the VSF lead to a median of 262 first-
party request per subject compared to only 72 with a static
crawler. Overall, we cover 24,352 unique first-party requests
from all sessions and websites. After the pre-filtering and
matching process, we end up with 1,566 request pairs of



Figure 4. Comparison between interactive mirrored website visitation (VSF)
and crawling it statically (Static) regarding the count distribution of unique
requests and domains encountered per visit.

which 970 are unique; resulting in 2.6 times more requests
compared to static crawling. These are the requests that the
VSF considers AC-relevant and within our threat model.
Candidate generation and templating (Section 6.3 III) fur-
ther deduplicate distinct request URLs into 584 candidate
URL templates, e.g., /users/alice1111/1234.json
and /users/bob2222/5678.json are distinct but re-
duce to the same candidate URL template /users/<user
ID>/<file ID>.json (Figure 2).

Interacting with the web app allows the client to reach
deep application states not normally reachable to a static
crawler. Changing application states normally occurs after
POST requests (e.g., saving a profile, creating a post, etc.).
We also verify that interactions allow us to reach inter-
mediary application states and send POST requests nor-
mally unreachable 1,140 unique POST requests, 2.6 times
more than a static crawler, of which 18% become probing
candidates. On top, we also generate 30,236 unique GET
requests 3.3 times more than static crawlers. Note that
the higher prevalence of GET requests is expected since it
includes (1) any request containing static resources which
often contain randomized parameters inflating their numbers,
e.g., example.com/_static/123456-789.jpg and
(2) advertisement and tracking services requests.

Overall, our VSF visitation experiments reveal a diverse
set of endpoints and more chances to detect AC issues from
the black-box servers than traditional crawling.

Manual Candidate Validation. We design our filtering
strategy to be more forgiving of false positives, as (1)
we expect AC vulnerabilities to not be very abundant, (2)
combing through the candidates using the GUI we designed
makes it easy to filter out emerging patterns of false positives
on the go, and (3) it is easier to drop candidates we do
not find useful than to start a new swapping experiment
for every new candidate skipped in prior iterations on the
VSF. Recall that we generate many probing candidates
per endpoint, one for each combination of variables we

choose to swap or keep as the reference, Section 6.3 III:
the 584 templates result in 6,096 probing requests. We
manually go through all groups of probing requests having
the same URL template, and choose one or more repre-
sentatives to analyze manually depending on the variety of
response codes and the importance of the value swapped in
the website’s context, e.g., for /api/<user ID>/<file
ID1>?backref=<file ID2> we likely care more about
file ID1 as it is the file the user will be visiting. For prac-
titioners deploying our tool, manual analysis is only required
for probing responses with “unexpected” status codes, i.e.,
20X or 30X codes. On average, a practitioner to manually
analyze 6 requests per site on average. On top, 43% of such
requests correspond to public or static resources that escape
the endpoint filtering (Section 6.3). Fine-tuning our filtering
heuristics can further reduce the manual analysis overhead.
The remaining 3 requests per site on average require in-depth
contextual analysis to understand harm and exploitability.

As expected, only 221 request templates (38%) pertain to
service endpoints for the main site functionality. The largest
source of false positives are endpoints interacting with public
resources with 254 (43%) URL templates of which 213
represent static resources. The VSF attempts to manipulate
these requests because they often contain many differentiated
identifier-like segments in the URL. Such resources can
be easily filtered out by including them in the filter lists
for the filtering module, e.g., URLs including _static,
assets, etc.. The remaining 41 public templates are service
endpoints: one such example is endpoints to bookmark an
article /api/bookmark?article_id=1. Such requests
contain all the elements we are looking for in an AC-
related request: credentials (through request headers or ses-
sion cookies), resource identifier (article_id), and an
action (bookmark). It is only by contextually understanding
that the object here is public that we rule it out. The
second-largest source of false positives is analytics, logging,
advertisement, and tracking endpoints, 110 URL templates
(17%), which have a similar structure to service endpoints:
a user identifier, an resource identifier, and an action e.g.,
(log_click). While we attempt to filter out tracking re-
quests with an ad-blocker module (Section 6.3), first-party
analytics, and logging requests are often allowed. Next, 40
templates attempt to swap non-AC-related parameters, often
in the URL path, since such parameters do not have a name
or key that the VSF can use to filter their purpose. Finally, the
remainder of the unfruitful templates try to swap parameters
in security requests to, e.g., Cloudflare and CloudFront.

AC Patterns. This section showcases the main patterns we
observed in the sites’ approaches to AC. First, we notice
that most endpoints (73.6%) rely on cookie-based creden-
tials, e.g., a shared session ID or authentication tokens.
Four times less frequently (18.4%) are authentication tokens
implemented in the headers directly, e.g., JSON Web Tokens
(JWT), client key, etc.. We attribute this to legacy practices
and the ease of storing and transmitting cookies – since the
browser handles it automatically. In comparison, developers
have to handle the storage and transmission of authentication



headers themselves. Lastly, 13 endpoint templates embed
credentials in the request query or body; such requests are
usually third-party API calls, where the credential is a sepa-
rate client key. As for resource identifiers, most request tem-
plates (53.9%) embed them directly in the URL segments,
e.g., /api/folders/<folder ID>/files, followed
by query parameters (26%). This is prevalent in GET re-
quests, especially navigation requests, to impose structure
and consistency in the page or API schemes. However,
such parameters are more accessible to attackers and the
public, visibly in the URL bar, and easily manipulated by a
motivated attacker. More complex endpoints (18%) use the
request body and the POST method, especially if they are
handling sensitive operations like a shop checkout. Lastly,
two templates use cookies to store references to resource
identifiers, namely for maintaining a stateful user cart in an
online shopping store.

Second, we noticed multiple cases where redundant user
identifiers were present in the same request, e.g., user ID,
email, and username. As we show in Section 7.3, such
practices can cause serious vulnerabilities. Causing a similar
worry, we found many resources to have global identifiers
despite being wholly private to users, e.g., on RedactedEdi-
tor.com any document uploaded is referred to with a global
long identifier, even through shareable links.

Finally, we evaluate the error handling of the AC policies
and their impact on our analysis. We identify four main
trends in handling unauthorized requests without causing
vulnerabilities: (1) 66 templates throw a 401, 403, or 404 er-
ror code to signal that the resource requested is out of bounds
for the user; this is the most appropriate response, but it can
come with privacy concerns if the server leaks too much
information about the error (e.g., “You cannot access this.
This item is owned by user Y” on RedactedPublisher.com ).
(2) Four templates return a 200 code response but contain
a custom error in the response body; such approaches are
not necessarily unsafe, but they make it harder to automat-
ically find vulnerable endpoints. (3) Four templates return
a 200-code response and attempt to remedy the situation
by suggesting a redirect link, showing a public version of
the page requested, or ignoring the parameter and serving
the response appropriate to the credential; such approaches
are not recommended as they can easily malfunction or trick
users, e.g., if user Y requests /profile?username=X, it
can show the profile data of Y but with the username of X.
Finally, (4) three templates attempt an immediate redirect
(30X response code) to the login page or an appropriate
index page; we also find such responses suitable and simple.

7.3. Authorization Vulnerabilities

After the in-depth manual analysis (described in Sec-
tion 6.5), we end up with 30 (5.5%) endpoints that improp-
erly respond to requests with bad AC pairs across 15 sites
out of 100. While improper responses are not necessarily
immediate vulnerabilities, they can be a strong indicator that
AC checks was not properly implemented, which developers
could unknowingly transfer to other (more sensitive) parts

of the application. Our exploit analysis concludes that 19
out of 30 improper responses are exploitable vulnerabilities
with tangible harms: (H1) leaking private user information,
(H2) partial credential hijacking, and (H3) user resource
manipulations. The remainder of broken AC responses either
(a) return successful responses but the responses themselves
are not valuable (e.g., returning post recommendations) or
(b) have resource identifiers that are ephemeral or impossible
to leak (e.g., image hash for Amazon storage services). We
enumerate here the main (non-exclusive) causes certain AC
responses qualify as vulnerabilities: (R1) using identifiers
with low entropy (e.g., incrementable, timestamp and incre-
mentable, etc.) – such identifiers can be easily manipulated
by the opportunistic brute-force attacker (5 vulnerabilities);
(R2) supplying identifiers that can be inferred from the user
credentials in a separate field, e.g., email in request body
(1 vulnerability); (R3) using the same resource identifier for
private endpoints and in endpoints accessible to other users
or the public (e.g., URL leaks [28]) (13 vulnerabilities); and
(R4) high entropy resource identifiers without any AC checks
(6 vulnerabilities). We would like to note that 13 out of 19
vulnerabilities are exploitable by the weaker opportunistic
brute-force attacker and reconnaissance attacker models,
while only the remaining 6 require a targeted attacker model
(Table 3).

In the following, we describe three serious vulnerabilities
we found as examples of instances of flaws. At the time of
this writing, we have disclosed the issues to vendors, but
have not received confirmation of fixes nor explicit consent
to name them, hence we redacted some details. A fourth
example is available in Appendix C.

Vulnerability 1: RedactedNews.com . The first service we
examine is a news website that allows users to make do-
nations on one of its pages. This page initiates a request to
/api/payment-provider/user, containing the user’s mail in the
body JSON. In response, the server returns an access token
for a payment provider which can be used to receive the
user’s payment information and purchase history. However,
anyone can input any user’s email address to obtain the other
user’s access token, thereby gaining unauthorized access to
that user’s payment information.

This unauthorized access could be exploited by a tar-
geted attacker who first needs to know a valid user email
address. However, since it is also possible to brute-force
common email addresses or use leaked email lists, a weaker
attacker model could also apply here.

To address this issue, we recommended that the vendor
validate the authorization via the session user’s email instead
of relying on the JSON body input. Any input that could be
manipulated by an attacker must be handled with caution.

Vulnerability 2: RedactedSocial.com . The next service is
an adult dating website. Every profile can be previewed
as a profile summary with the information received via
the API endpoint /coreapi/profile summary?handle=<user
handle>&id=<profile id>. This can be done using either a
user handle or their user ID. While the handle is visible on



the website, the IDs are unique numeric identifiers used only
by the API. The ID consists of two parts, totaling 12 digits,
and appears only partially random. Retrieving someone’s
profile summary remains possible even if the corresponding
user profile was set to invisible for other users.

An opportunistic brute-force attacker could easily enu-
merate the IDs to gather user information about several users
who intended to be hidden. A targeted attacker could achieve
the same by directly using a specific user handle.

This issue originates from the API’s failure to verify
whether a profile is set to invisible or not. We, therefore,
recommended the vendor to implement this check within
the API to resolve the issue.

Vulnerability 3: RedactedEditor.com . The third vulnerabil-
ity we describe was found in a PDF signature service. A user
can upload a PDF and distribute the document to other sign-
ers via mail. For a new signature task, a task token is created.
Visiting /signature/request/<token>, the user can
see and configure the signature request. Using the same
token with the API /v1/signature/user/<token>
further reveals information about the signers and files. Al-
though the signature task is bound to accounts via email
addresses, every user possessing the token can open the
request, download the linked files, and view all signers’ info.

The token itself is 70 random characters long so pre-
sumably very secure. Since the signature requests are sent
via e-mail (which could potentially leak the token), this is
however a prime example of a vulnerability that falls in the
opportunistic reconnaissance attacker model.

To resolve this vulnerability, we would recommend ver-
ifying the request’s authorization by checking both the ses-
sion user’s email and the signers’ emails. Relying only on a
randomly generated token in the URL is not enough.

These three vulnerabilities were discovered due to unique
design features of the VSF: First, vulnerabilities (1) and (3)
require sending POST requests, which prior work avoids
due to ethical concerns; the VSF can send POST requests
because we are sure to manipulate our own users’ data
only. Second, vulnerability (3) requires a complex setup of
specific resources and user states (e.g., creating a signature
request), which is only possible ethically with controlled
manual visitation in the VSF.

8. Discussion

Our results show that the Variable Swapping Frame-
work is capable of detecting critical authorization issues
efficiently, mainly thanks to the live browser mirroring. On
one side, it allows the practitioner to explore a diverse
set of interactions and utilize their domain knowledge to
poke more on the sections of the site where more sensitive
processes take place, e.g., cart checkout, messaging a user,
etc.. On average, visitation takes 7.75 minutes (𝑌 = 3.9)
per site. On the other side, the almost-perfect synchroniza-
tion (Figure 3) of the visits between users ensures that we
can almost always find two examples from an endpoint to
generate probing candidates and evaluate the AC of it. The

modular and upgradable filtering heuristics reduce the set of
candidates to probe and to be later analyzed manually. We
show in Section 7.2, only 6 requests per site on average need
manual validation, only 3 of which require deep vulnerability
analysis. Automating deep vulnerability assessment is a chal-
lenging problem, as it requires understanding the semantics
of the response, the context of the request, and the user’s
state; we regard this as distinct topic for future work. We
discuss more about the usability and scalability of the VSF
in Appendix D.

With the VSF, the only manual bottleneck is the site
visitation. In reality, the VSF is agnostic of the driver of the
visitation, be it a human or an automated agent. However,
guaranteeing an ethical automated visit is presently challeng-
ing, due to the many unethical interactions that look very
similar to ethical action, e.g., messaging bob1 who is a
third-party user instead of bob2 who is our controlled user,
reporting a user instead of following them, etc. Evaluating
interactive agents on their ethical grounding is an interesting
problem for future work.

Finally, regarding the access control in the wild, we find
that 15% of the sites incorrectly handling bad AC requests
are not negligible. This confirms the high rank of the access-
control vulnerabilities in OWASP’s Top 10 [1]. Most issues
occur because of redefining the identity through variables
other than the credentials, e.g., having a separate username
field, or because of relaxing the need to maintain AC on
resources referenced by long and complex identifiers. Even
when AC responds correctly, the variance in how it reports
forbidden access varies widely between sites, making it
harder to automate the analysis, e.g., returning a 200 code
response but containing an error JSON object in the body.

8.1. Responsible Disclosure

We reported all 19 vulnerabilities to the correspond-
ing parties using the most appropriate security channel we
could find, including bug bounty programs, privacy email
addresses, and in many cases generic email addresses such
as contact@ or help@. At the time of writing, we did
receive feedback from several operators with one providing
a bounty payout, while others acknowledged and accepted
the reports. None of the responses denied the issues raised.

8.2. Limitations & Future Work

As with any empirical tool, we encountered many lim-
itations and constraints that shaped the design of the VSF
and our methodology. We briefly enumerate in the following
sections the main sources of limitations. We also discuss
avenues to overcome some limitations in future work.

Unexplored Interactions. While visiting websites, we ab-
stain from many interactions for ethical and logistical rea-
sons: (1) we do not perform any interactions requiring
payment; this includes unlocking website sections available
to paid subscriptions, proceeding with a purchase from an
online shop etc.. (2) we consider it unethical to interact with



third-party users directly as it would constitute spam activity;
this includes sending them messages, reporting them, etc..
We still perform passive actions like following them, liking
their posts etc. as long as we reverse the actions afterward.
(3) we do not permanently influence public resources, e.g.,
submitting a form to contact IT support or rating a product
without removing the rating immediately afterward. (4) we
do not update username or password sections of the user
profile, as it might log out our users, and compromise the
mirrored visitation session. Finally, (5) we ignore actions
that require a complex user state, e.g., only users who rated
five products on a store can add a profile picture.

Different User Roles. The current configuration of the VSF
supports only users of the same role. However, several parts
can be extended to support different roles, e.g., by using the
parameter extraction heuristic (Section 6.3) to build global
variable values dictionaries that users of different roles can
share across distinct API requests. The mirrored visitation
is less useful in cases where users of different roles have
non-overlapping website layouts. We do not explore this
in the current work, as most websites we evaluated only
expose a single role to the user. Generating higher-privilege
users would require provider-cooperation, which is out of
the scope of this black-box work.

Website Limitations. Some websites are not easy to visit
and this can happen due to many reasons: Site language that
might be hard to parse by certain researchers; sites that try
to load large content such as high-quality videos or custom
animations that cause a considerable lag; And finally, sites
with many redirects and randomly opening new tabs – this
often happens due to advertisements.

8.3. Recommendations

As we believe we have demonstrated with this work,
AC research in a real-world environment is ethically possi-
ble if ethics are considered for every step of the research
process. For researchers who aim to focus on the server-
side issues in the real world, we recommend following a
similar approach and also conducting a stakeholder analysis
as suggested by previous ethics work [32, 31] and as outlined
in Section 5. This exercise encourages the researcher to
deeply assess the potential risks and benefits their work may
present to individuals affected. The literature in the past
years started to provide useful guidance on ethical practices
and potential pitfalls, with work continuing to evolve in this
field [32, 31, 9, 39]. In general, we believe that this exercise
is a good practice for any study to understand their place in
the context of society, fostering more responsible and refined
research. We also provide recommendations for developers
based on the insights from vulnerabilities in Section E.

9. Conclusion

Being unable to study server-side flaws such as improper
access control in the wild comes with significant detriments

for the security of the web ecosystem. In this work, we show
that such studies are feasible in an ethically sound fashion
by carefully considering all stakeholders and designing a
measurement framework to abide by a strict set of rules
while finding (and disclosing) real-world flaws.

Our extensive stakeholder (Section 5) analysis highlights
that the VSF design addresses the largest ethical questions
the experts raised: Our mirrored browser setup with two
proprietary accounts (Section 6.2) prevents cases where we
accidentally target a third-party user without consent. Our
strict visitation protocol and limits on interactions ensure we
cannot harm third-party users, e.g., reporting their accounts,
messaging them, etc.. Finally, limiting the rate and number
of probing requests ensures we do not abuse server resources.

Second, we study the utility of the VSF in finding
improper AC patterns and vulnerabilities in the wild. We
visited 110 websites and generated 6,069 probing requests
for 584 unique endpoints. Our results show that the mir-
rored visits maximize the number of testable endpoints by
providing example requests to these endpoints from both
users. Requests are compared live and filtered to include
only AC-related requests while allowing for false positives to
maximize exploration. Our manual validation of the probing
requests uncovers 30 improper AC endpoints across 15 web-
sites. As we find that 19 of these endpoints can be exploited
as vulnerabilities, we conclude that the VSF reached its
intended purpose without crossing ethical lines.

We deliver this framework as proof that server-side
scanning on live websites is possible without compromising
legal and ethical limits highlighted by Hantke et al. [9]. We
encourage future work to let ethical requirements shape their
frameworks to maximize the utility of the study and mini-
mize the harm to the stakeholders involved in the experiment.
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Appendix A.
Implementation Details

A.1. Mirrored Browser Setup

We use Playwright [40] to create the leader and fol-
lower Chrome browsers and load sessions fetched from the
Account Framework (Section 6.1). To transmit interactions
from the leader browser to the follower browser, we mod-
ify an existing Playwright feature: Codegen. Codegen is a
mode to boot Playwright browsers into that records all user
interactions and translates them into testing scripts to be
replayed later. We modify the internal code of Codegen by
attaching a WebSocket emitter for the leader browser that
sends a WebSocket event for each Playwright action to a
local signaling server we set up. The signaling server routes
the events to the follower custom WebSocket client to exe-
cute them. Since executing scripted actions must ordinarily
come from Playwright scripts, we could write the action
into a script and then run it. However, we opted for a more
elegant solution: First, note that Playwright allows for remote
browser control, i.e., being able to run the browser on a
different machine than the machine on which the Playwright
process is running through WebSocket for performance rea-
sons. So, we create a browser server for the follower and feed
it fake instructions for each action from the signaling server
as if coming from a playwright client process. Supported

https://www.welivesecurity.com/2019/09/12/vulnerability-instagram-private-information/
https://www.welivesecurity.com/2019/09/12/vulnerability-instagram-private-information/
https://hackerone.com/reports/751577
https://hackerone.com/reports/1475520
https://threatpost.com/uber-portal-leaked-names-phone-numbers-email-addresses-unique-identifiers/122128/
https://threatpost.com/uber-portal-leaked-names-phone-numbers-email-addresses-unique-identifiers/122128/
https://cwe.mitre.org/data/definitions/639.html
https://cwe.mitre.org/data/definitions/639.html
https://www.cve.org/CVERecord?id=CVE-2021-36539
https://nvd.nist.gov/vuln/detail/CVE-2023-4836
https://nvd.nist.gov/vuln/detail/CVE-2023-4836
https://portswigger.net/daily-swig/urlscan-io-api-unwittingly-leaks-sensitive-urls-data
https://portswigger.net/daily-swig/urlscan-io-api-unwittingly-leaks-sensitive-urls-data
https://proton.me/mail
https://proton.me/mail
https://easylist.to/
https://github.com/ArniDagur/python-adblock
https://github.com/ArniDagur/python-adblock
https://curl.se/
https://developer.chrome.com/docs/crux/
https://www.usenix.org/conference/usenixsecurity25/ethics-guidelines
https://www.usenix.org/conference/usenixsecurity25/ethics-guidelines
https://playwright.dev/
https://playwright.dev/
https://learn.microsoft.com/en-us/sharepoint/shareable-links-anyone-specific-people-organization
https://learn.microsoft.com/en-us/sharepoint/shareable-links-anyone-specific-people-organization


Playwright interactions primarily include clicks and form-
filling, which we find enough for most website interactions.
To point the browser to the interaction element, Playwright
uses a combination of XPath, CSS selectors, and text content
search; but, we find that such locators can differ between the
leader session and the follower session causing the follower
not to find the element to interact with. An example we
encountered was using the username as an element locator
p[innerText=’alice’] which can only be found in
the browser session logged in with Alice. To counter this,
we modified Playwright to include a position-based locator
as a fallback, i.e., tell the browser to click on the position
(𝑍, 𝑎) of the window. We found this workaround sufficient in
most cases as the UI position is identical between browser
sessions.
Minor Limitations. The codebase of the VSF is still in the
early development stages, but we plan to work on it until
we can release it as an open-source tool. For instance, so far
only one tab of the browser is synchronized between users,
and alert boxes are not synchronized. This means that we
have to avoid actions that trigger new tabs or alert boxes.
Regarding analysis, we worked through most of the bugs in
the candidate creation and sending. However, in a handful
of instances, character-escaping the response body behaves
incorrectly leading to bad candidates.

A.2. Request Comparison

Comparing request parts, like the body, as string can be
suboptimal as many differences in the bodies can completely
shift values and render the diffing useless. So, before com-
paring requests to extract varying elements (our variables),
we transform each part of the request (URL path, URL
query, headers, and body) into a dictionary. Some parts like
URL queries and headers are straightforward to represent
as dictionaries. For URL paths, we divide the segments of
the path and key them with url_i. The body presents the
biggest challenge as it can be encoded into various formats or
compressed. We cover the most widely encountered formats
like JSON, URL-FORMDATA, URL-encoded JSON, URL-
encoded URL-FORMDATA, base64 JSON, by detecting the
format and transforming them into dictionaries. We later use
deepdiff python library to get the difference between the
two bodies.

A.3. Variable Filtering Heuristic

After extracting all variables in the requests in the form
of dictionaries (variable_name: variable_value),
we need to filter whether these variables are interesting
(i.e., resource identifiers) or uninteresting (i.e., credentials or
other random identifiers). We rely on heuristics and pattern
matching to classify variables:

For URL paths, the names of the variables are url_<i>
where i is the index of the segment in the path. For the
rest of the components (headers, query, and body), we use
the keys provided by the request (e.g., header name, query
parameter name, body key if JSON, etc.).

We maintain three pattern lists: a name ignore list (NIL),
name allow list (NAL), and value allow list (VAL). We also
create an identity keywords list (IKL) which contains the
username, email, and other info of our users – the idea being
that any variable including these, should be interesting to
swap. All lists can be found in the code repository of the
framework.

A variable is considered interesting to swap if:

1) the value matches the IKL.
2) the name DOES NOT match the NIL

a) AND (the name MATCHES the NAL OR
the value matches the VAL)

b) AND the value is not a valid timestamp
c) AND the value is not a floating point num-

ber

The following are example REGEX patterns we use to
match the NIL, NAL, and VAL:

• NIL: req(uest){0,1}[\-\._]*(S|s)ig (matches re-
quest tokens and signatures)

• NAL: list(Id|id|_id) (matches resource list iden-
tifiers)

• VAL: [0-9]{6,} (matches numbers with 6 or more
digits)

The full lists are available as text files in the project
repository, and can be easily updated to fit the needs of
future studies.

Appendix B.
Visitation Protocol

We communicated the following guidelines with re-
searchers conducting the website visitation:

1) The goal of the interactions is to cover user-related
actions with the website, this includes:

a) navigating in user account and user profile
editing

b) likes, follows, bookmarking
c) view followers, subscriptions, friends, ...
d) uploading data

2) In case the action you will perform asks for addi-
tional credentials (verifying the password again), do
not proceed and return to the previous state.

3) In case your action involves inviting a user or
adding a friend, use the third account you are pro-
vided that is not used in any of the two sessions
you have opened up.

4) Do not perform interactions that interact directly
with external users, e.g., messaging an apartment
owner, sending a friend request, submitting a form
that requires other users to process and follow up on
(e.g., schedule meetings) as they can be considered
as spam.

https://github.com/Saiid2001/vsf
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5) Perform interactions at a slow enough pace that
the follower browser can catch up, and the live-
swapping workers can catch up.

6) Avoid clicking on the following:

a) window popups, e.g., alert()
b) iframe or embedded third-party content

7) Always remain on the first browser tab for each
browser.

a) In case the website opens additional tabs
when navigating, then

i) copy the URL from the second tab
back to the first tab in the leader

ii) close the second tab for both the fol-
lower and the leader

8) Keep performing interactions until you think you
covered all possible interaction types possible in the
site for a user, ex: if liking an item is possible, you
only need to do it once.

9) If your interaction changes the account states for
both users, make sure to revert this action, e.g., you
check “make my profile public” and save, then you
need to un-check it and save again.

10) If you want to change personal information for both
users, which has to be different for each user do the
following:

a) change the value in the input field of the
leader. Your value will be copied to the
follower which we don’t want.

b) change the value in the follower browser.
Now the leader and follower have different
values.

c) click “save” on the leader.
d) make sure to revert the action if it changes

the state.

Appendix C.
Additional Vulnerability Examples

Vulnerability 4: RedactedPublisher.com . The last service
we demonstrate is an online publisher that people can use
to add articles to their websites. When a user creates a new
document draft, it is accessible for the user via a newly
generated 11-character long ID: /worflow/drafts/<ID>/info.
However, unlike other similar URLs on this website, the
server does not check the authorization when accessing this
URL and returns the draft. Other URLs instead return a
message containing the current user’s and the author’s ID.

A targeted attacker knowing this ID could thus retrieve
the current status of a document draft on this platform.

Instead of basing the authorization check on the ID, we
recommended that the vendor enforce authorization checks
based on the user’s current session, as it is done by other
endpoints. Additionally, to prevent the leak of the author’s
user IDs, we also suggested using a generic error message
rather than a detailed one.

Similar to the previous examples, this finding benefited
from our framework with which we could create new articles
without harming other users.

Appendix D.
Deployment, Scalability & Usability

In this section, we share details about the usability of the
VSF and how it can be deployed.

We implemented the VSF to be as user-friendly as pos-
sible and we found that the involved student helpers did
not find any issues learning how to use it. On average,
participants spent 7.75 minutes (𝑌 = 3.9) on each site
and performed 54 interactions on average, naturally vary-
ing greatly between sites (𝑌 = 29). Additionally, the GUI
analysis app accelerates candidate analysis and uncovering
vulnerabilities.

We implement the VSF over multiple inter-connected
Docker containers (e.g., a manual visitation container, swap-
ping container, automated visitation coordinator, etc.). This
helps with deploying the framework anywhere without wor-
rying about dependencies and special requirements. This also
means that the framework scales easily with the increased
participants, by simply booting up new manual visitation
containers. We also use VNC, to reduce the requirements of
participants, only accessible to involved researchers through
a central IP in the university’s network.

Appendix E.
Recommendations For Server-Side Developers

In this section, we showcase general primitives from the
endpoints we analyzed that could prevent many of the AC
violations. These guidelines are agnostic of the application
or infrastructure developers use.
P1. Infer all user-specific identifiers from their credentials
rather than passing them through in the request. For exam-
ple, rather than using /profile/<username>, develop-
ers could have a generic /profile and extract the user-
name from the credential, like request.user in Django.
This prevents many opportunities, where an authenticated
user can impersonate another.
P2. Separate shareable resource identifiers from internal
identifiers. For example, for a website managing PDF doc-
uments, each document can have an internal identifier used
for internal APIs and a public (possibly temporary) public
identifier used for shareable links for this PDF. Many file-
sharing services like Microsoft OneDrive implement such a
technique [41].
P3. Use POST request instead of GET for requests with
sensitive identifiers, and move them from the URL to the
body. This is a simple technique that protects users from
accidentally pasting the URL somewhere it should not be or
screenshot leaks.
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