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ABSTRACT
Since the first vulnerability disclosure program (VDP) in 1963, these
programs have recently gained more attention throughout the in-
dustry, allowing external people to search for and report vulnerabil-
ities. However, current research in this direction primarily conducts
surveys with stakeholders or extracts insights into management.

With this work, we shift the focus to the technical side of VDPs
and investigate the opportunities for ethical and legal vulnerability
research using a VDP dataset. We therefore created a dataset of 3462
websites listed within VDPs along with their policies, and compared
them against a set of 9423 popular websites from the CrUX list to
gain insights into their usability for web security research.

Our measurements reveal that websites participating in VDPs
demonstrate greater security practices and fewer vulnerabilities.
Nearly twice as many CrUX websites include outdated libraries
with known vulnerabilities. Further, we found and validated more
client-side XSS attacks on CrUX domains (0.49%) than on VDP-
listed domains (0.16%), and observed insecure CSP use 5% more
often in CrUX. While security appears to be improved within such
programs, their policies allow researchers to test areas that are
otherwise difficult to assess in large-scale, real-world environments,
such as server-side vulnerabilities. Our results highlight how VDPs
could enhance research, namely offering valuable insights into web
security that can serve as a lower bound estimate for the overall
Web. This suggests that VDPs could also provide an indirect entry
point to study server-side security postures at scale, a hypothesis
we outline for future work.
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1 INTRODUCTION
“Get a bug if you find a bug” — This title represents the beginning of
bug bounty programs in the digital area. It was the title of the first-
ever bug bounty program, whichwas introduced byHunter & Ready
in 1983 [16]. The prize was a Volkswagen Beetle, also known as
“bug”, for everyone who could demonstrate a bug in their VRTX real-
time operation system. They were the first to offer hackers not only
financial rewards for their findings, but also a structured and legal
way to report, an agreement today often referred to as safe harbor.
Since 1983, Bug Bounty and Vulnerability Disclosure programs have
seen a rapid growthwith an expectedmarket size of USD 5.74 billion
by 2033 [9]. Today, many large corporations run such structured
programs, often managed by platforms such as HackerOne and
Bugcrowd, and the number of programs is growing [25, 26, 75]. Even
many government bodies, with support from organizations like
CISA, have started programs to improve their cybersecurity [14]. In
short, the ecosystem around bug bounty and disclosure programs
has grown into a major business.

Yet, despite their immense growth and popularity, these pro-
grams have not gained traction widely within academic web secu-
rity research. While occasionally papers studied the effectiveness,
development and key factors of bug bounty programs [1, 5, 23,
75, 76], the web security measurement community continues to
rely primarily on widely popular websites such as those from the
CrUX or Tranco lists. Conducting measurements on live systems,
however, raises ethical and legal challenges [29, 38], particularly
in the case of critical experiments such as server-side vulnerability
assessments. Legal uncertainties, notably, have produced chilling
effects, discouraging researchers from pursuing such studies [24].
As ethical and legal considerations gain increasing importance in
our publications [41] and call for papers [73], it becomes essential to
explore alternative approaches for conducting web measurements.

To address and overcome these challenges, we explore whether
Vulnerability Disclosure Programs (VDPs) can enable empirical
research on server-side security issues at scale. Unlike traditional
web measurement datasets, VDPs provide explicit authorization,
scope definitions, and safe-harbor guarantees for active testing that
are otherwise ethically or legally challenging to study. We believe,
these programs offer researchers the rare opportunity to test real-
world applications within an authorized scope, including critical
experiments such as server-side assessments, without facing the
same ethical and legal uncertainties. Building on this perspective,
we explore How can researchers leverage these programs for broader
empirical studies? and What trade-offs do researchers face with these
programs compared to traditional web measurement datasets?

Motivated by these questions, we collected data from bug bounty
and disclosure programs and conducted security measurements on
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3462 in-scope domains from major bug bounty and disclosure pro-
grams, comparing their security practices to 9423 domains from
the CrUX list. Our measurements cover HTTP security headers,
cookie and their attributes, third-party JavaScript inclusions, TLS
configurations and client-side XSS vulnerabilities, which we man-
ually validated. This approach allows us to assess whether VDP
participation correlates with improved security and to explore the
suitability of VDP-listed sites as an alternative dataset for web secu-
rity research. While our measurements in this paper focus for good
legal and ethical reasons only on client-side aspects, our analysis of
VDP rules and scopes suggests that such datasets offer a promising
entry point for future studies of server-side vulnerabilities.

In short, this work makes the following key contributions:
• An open-source python framework collecting information
of bug bounty and disclosure programs, including scope
definitions and rules from Bugcrowd, HackerOne, Intigriti
and YesWeHack, resulting in a public dataset [17].

• Collection and analysis of legal and technical requirements
defined in program rules to qualify for safe-harbor, ensuring
compliance in our experiments and providing guidance for
future research.

• A large-scale security measurement of 11 734 webpages from
these programs and 81 702 from CrUX, comparing multiple
client-side security aspects.

• An evaluation of the benefits and trade-offs of VDP-based
datasets, showing that their scope definitions and safe-harbor
guarantees enable ethical large-scale measurement research
on server-side security compared to popularity-based lists.

Our pipeline VDPCollect and the dataset are open source [17].

2 BACKGROUND & RELATEDWORK
Before providing details of our research, we define key terms, review
related work, and outline the client-side security metrics used.

2.1 Vulnerability Disclosure Programs
Starting with the central point of our work, we define the term Vul-
nerability Disclosure Programs (VDP). There exist multiple types of
VDPs, those rewarding an accepted vulnerability with a bounty are
called Bug Bounty (BB). Programs offering no monetary compensa-
tion, but only acting as a platform for coordinated disclosure, are
Vulnerability Disclosure (VD). For our work, we summarize both
types under the term Vulnerability Disclosure Programs (VDP),
since both follow the same concept and offer legal protection when
complying to the rules. Despite this advantage, research on the
potential of VDP for the scientific community remains limited.
Existing studies primarily focus on statistical evaluations of the
development [9, 75], investigations to gain a better understanding
of the program rules [76], interviews and surveys to identify key
success factors [1] and assessments of the costs and benefits for the
industry [5, 23, 75]. While these papers present promising results of
a growing number of VDPs across different providers and industry
sections [9, 75], researchers have not yet considered VDP-listed
websites as a dataset for conducting web security measurements.
We still miss an assessment of the usability, benefits, limitations
and potential biases that measurements using such a dataset would
introduce compared to relying on the broader Web.

2.2 Security Aspects
Our analysis focuses on observable client-side security features.
With the increasing web security awareness, modern browsers
implement client-side protections to ensure the confidentiality, in-
tegrity, and safe execution of web content. Key features include
HTTP response headers, cookie attributes, SSL/TLS certificates, and
vulnerability assessments.

2.2.1 Client-Side XSS. One of the most common vulnerabilities on
the Web is Cross-Site-Scripting (XSS) attacks. Defined initially by
Microsoft engineers in 2000 [53], XSS refers to attacks where an
adversary injects malicious JavaScript, HTML, or other fragments
into a victim’s browser, causing it to be executed in the victim’s
context. Over time, many people studied XSS, introducing a variety
of subcategories such as server-side, persistent, blind, or client-side
XSS [38, 56, 57, 68]. Despite ongoing research, XSS remains one
of the most prominent web vulnerabilities, also appearing in the
OWASP Top 10 [59]. Our focus is on client-side XSS, which occurs
entirely in the browser-side due to insecure handling of user input
in client-side code, without involving the server-side at all.

2.2.2 Security Headers. A fundamental mechanism for enforcing
browser security policies against XSS and similar attacks is us-
ing security- and privacy-related HTTP headers. These headers
have become essential tools for mitigating attacks, including click-
jacking [12, 32], mixed-content [4, 47], or unauthorized cross-origin
interactions [61].

One key HTTP security header is the Content-Security-Policy
(CSP), which restricts the execution and inclusion of scripts and
other content through directives such as script-src and object-src,
blocking untrusted sources. To mitigate XSS, they can also deacti-
vate dangerous functions such as eval and inline event handlers. To
prevent eavesdropping and mixed-content issues, CSP supports di-
rectives like upgrade-insecure-requests and block-all-mixed-content.
Additionally, the frame-ancestors directive further lets developers
control which sites are allowed to embed their pages. [52]

The predecessor of the CSP directive frame-ancestors is the X-
Frame-Options (XFO) header, which was designed to enable devel-
opers to restrict which websites are allowed to embed their pages
in framing contexts such as <iframe>, <frame>, or <object> elements.
While the CSP offers more fine-grained controls, the original header
XFO is used similarly to prevent clickjacking and iframe-based at-
tacks by it either to SAMEORIGIN, ALLOW-FROM, or DENY. [51]

Similar to the upgrade-insecure-requests enforcing the upgrad-
ing of HTTP connections to HTTPS, the Strict-Transport-Security
(HSTS) header instructs browsers to access websites over HTTPS.
The header contains multiple directives:max-age defining how long
the browser should enforce the HTTPS upgrades in seconds, in-
cludeSubDomains instructing the browser to also upgrade requests
to its subdomains, and the preload directive to ask for inclusions in
HSTS preload lists, which then enables the browser to initiate the
upgrade already for the first request towards the host. [50]

Irrespective of the protocol used to visit a website, during all
requests, the browser adds information about the referring (previ-
ously visited) host in outgoing requests and navigation. This infor-
mation can pose privacy risks. To mitigate this, browsers support
the Referrer-Policy (RP) header, which allows developers to control
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whether the full URL, only the origin, or no referrer is sent when
navigating between pages or making subresource requests. [49]

Beyond controlling the exposure of privacy-related information,
another header enables the restriction of powerful and privacy-
threatening browser features. This is archived by the Permissions
Policy (PP), formerly known as Feature Policy, allowing developers
to explicitly control the availability of powerful browser features
and APIs. Developers can selectively turn on or off features such
as geolocation, camera access, fullscreen mode, or clipboard opera-
tions through a set of policy directives. [48]

To address and mitigate cross-site leaks and related threats, head-
ers such as the Cross-Origin-Opener-Policy (COOP), Cross-Origin-
Embedder-Policy (COEP) and Cross-Origin-Resource-Policy (CORP)
control the sharing of resources or window references across devi-
ating origins. [43–45, 61]

2.2.3 Cookies. Besides HTTP headers, cookies are also a stan-
dard Web mechanism, used to store information on the client-side.
Nowadays, cookies are used for various tasks, including session
management, advertising, and tracking. Their intent and origin
can often be inferred by analyzing their domain and name and
comparing those against publicly available tracking lists [74].

Cookies are not secure by default, especially when used for
sensitive tasks like authentication. To address this, modern browsers
support security attributes that enhance cookie handling: the Secure
flag ensures cookies are transmitted only over HTTPS, mitigating
simple Man-in-the-Middle (MitM) attacks; the HttpOnly option
blocks JavaScript access to cookies to prevent theft via XSS; and the
SameSite attribute controls cross-origin cookie transmission. For
SameSite, the option Strict limits cookies to same-origin requests
only, Lax allows them on top-level navigations and None always
sends the cookie along, but requires Secure to be set. [33, 46]

The usage and effectiveness of these attributes have been ex-
tensively studied in earlier work, which analyzed their deploy-
ment across websites and their impact on web security at a large
scale [8, 36, 65, 69]. Previous work has also studied cookies’ purpose
and classified them, particularly focusing on third-party cookies for
advertising and tracking purposes [22, 31, 74]. As browsers have
increasingly started restricting third-party cookies [13, 35, 54, 55],
there has been a shift toward using first-party cookies for simi-
lar tracking activities, often employing techniques such as DNS
CNAME cloaking to bypass browser restrictions, which were also al-
ready analyzed in prior work. [18] Since the blocking of third-party
cookies is only active under certain circumstance (e.g., browsing in
incognito mode), still first and third-party cookies are used during
normal browsing, which can be analyzed.

2.2.4 JavaScript Inclusions. Besides cookie usage, we also study
third-party JavaScript inclusion, which web developers commonly
use to extend website functionalities. Research observed that the
average number of script inclusions increased steadily from the
early 2000s until around 2016, after which it has stabilized at a
constant level [28, 57, 69].

Each third-party script introduces security risks, as vulnerable
or outdated third-party code can expose websites to attacks. Prior
work has shown that reliance on external scripts often leads to vul-
nerabilities due to poor update practices and insecure code within
the included sources [42, 56, 57].

Provider #Programs #LinkedIn Location Focus

HackerOne 460 314k USA -
Bugcrowd 201 124k USA -

YesWeHack 74 47k France -
Intigriti 125 34k Belgium -
Immunefi 316 9k Singapore web3/crypto

HackenProof 237 4k Estonia/Ukraine web3/crypto
GoBugFree 85 2.6k Switzerland -

Huntr 326 2k UK ML/AI
VulnScope 162 <1k Chile -

BugRap 52 - Singapore web3

Table 1: Identified VDP providers

These scripts are not always functional; many can serve purposes
such as tracking, fingerprinting, or advertisement. Their classifica-
tion, based on their origin, path, or by utilizing specific classification
frameworks, has been studied by previous research, which demon-
strates the extensive use of such privacy-invasive scripts [22, 30, 67].

2.2.5 Transport Layer Security. Another client-side observable se-
curity mechanism is the Transport Layer Security (TLS) imple-
mented by the browser based on instructions from the websites.
It ensures the confidentiality and authenticity of web communica-
tion. By enforcing HTTPS over SSL/TLS, modern browsers protect
the connection from interception and Man-in-the-Middle (MitM)
attacks during transmission. TLS relies on digital certificates pre-
sented by the websites, providing all necessary cryptographic pa-
rameters for the encryption and validates through a chain of trust.

Research has shown that vulnerabilities and configuration weak-
nesses within the process can compromise these security guaran-
tees. Famous vulnerabilities significantly threatening the confiden-
tiality and authenticity, are Heartbleed [71], poodle [6], or MitM
attacks [10], which have been extensively demonstrated and studied
in earlier work.

3 VULNERABILITY DISCLOSURE SITES
To enable web security measurements against VDP websites, we
first have to create a comprehensive dataset. This section contains
the methodology for creating the dataset, along with other impor-
tant information extractable from the individual programs.

3.1 Collection of Programs
To ensure the data’s completeness, correctness, and freshness, we
collected programs ourselves rather than relying on potentially out-
dated existing lists.We identified potential candidates by looking for
providers with at least 50 programs, open registration, and allowing
us to check programs without a prior application/reviewing process.
Based on a public list [20] and manual web searches, we compiled
a list of ten providers (see Table 1). To inform our final decision,
we reviewed each provider’s number of public programs, LinkedIn
follower count, headquarters location, and provider’s specialization
(if applicable), e.g., Web3 or cryptocurrencies.

We chose to analyze Bugcrowd, HackerOne, Intigriti, and YesWe-
Hack based on their great overall coverage. Besides being among
the largest and most popular providers, we chose those due to their
geographic location. The providers Bugcrowd and HackerOne are
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located in the US, and their customer base is similarly concentrated
there. To ensure a broader picture, we included Intigriti, a Belgian
provider and YesWeHack from France. Another key factor for our
selection was the providers’ broad scope, including companies from
all fields of work (in contrast to other major providers like Hack-
enProof and Immunefi, who focus only on specific fields such as
crypto). This selection enables us to gain a complete overview, in-
cluding VDPs from different areas, similar to the CrUX list variety.

To collect the publicly available VDPs, we implemented a crawler
for each provider into our pipeline VDPCollect, each logging into a
fresh account and gathering all public programs (Figure 2 part one).
The collected data includes the program title, company name, rules
or descriptions, scope details and any additional information or
prerequisites, such as specific HTTP headers or request rate limits,
that should be considered during testing.

On completion of our self-implemented provider crawls, their
raw data is stored in a database for further processing. The first step
is extracting actual webpages from the raw scope entries collected
for the VDPs. This extraction is required since the collected scope
entries can describe any type of scope, such as webpages, IPs, mobile
applications, or even physical products. For the extraction, we relied
on the RegEx library of python3 with an expression matching valid
URLs of different writing and structuring.

3.2 Coverage
With our initial crawls, we collected 11 975 in-scope entries of 843
scraped VDPs, and after applying our extraction process, we com-
piled a list of 9919 scope matching our website scheme. Having a
list of websites from VDPs, we compare their inclusion in tradi-
tional web measurement datasets. We chose to compare our dataset
against the CrUX list, as it has been recognized as the most accurate
list of popular websites [66]. We therefore split the CrUX list into
the smaller buckets and checked the number of domain names,
that occur within any VDP we collected. As presented in Figure 1,
the percentage of continuously decreases by broadening the limit.
While within the top 1k entries, almost one fifth of thewebsites have
a match within the VDP dataset, less than 5% are reached within the
top 50k entries of CrUX. This already indicates that higher-ranked
websites are more likely to have a VDP. However, we employed
optimistic matching to obtain these percentages, as we did not dis-
tinguish between different suffixes and relied solely on the domain
name. A case illustrating this optimism during matching is Telenor.
While ’telenor.se’ (Sweden) is part of a VDP, ’telenor.com’ lacks a
corresponding VDP, despite both domains belonging to the same
company group and sharing the domain name [72].

3.3 Rules
In addition to the websites listed as in-scope in the VDPs, we also
collect each program’s rules and descriptions to ensure ethical and
legal compliance. These include accepted and excluded vulnerability
types, required request headers and request rate limits. Adhering
to these rules is essential, as violations may result in the loss of safe
harbor protections.

Due to the majority of rules being mentioned within the free text
field collected as rules and descriptions, we face the challenges of
automated natural language processing. None of the providers uses
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Figure 1: Overlap of VDP and CrUX domain names

Rank In-Scope Category # Out-of-Scope Category #

1 Access Control / Authenti-
cation

386 Misc 694

2 Misc 345 Information Disclosure 523
3 Remote Code Execution 316 Denial of Service 484
4 Cross Site Scripting 253 3rd Party Vulnerabilities 425
5 Information Disclosure 215 Social Engineering 422
6 SQL Injections 127 Automated Vulnerability

Scanner
372

7 CSRF 122 Clickjacking 336
8 SSRF 73 Security Best Practices 312
9 Open Redirects 60 Content Spoofing / Injec-

tion
309

10 Configuration Issues 47 Configuration Issues 294

Table 2: Top 10 in-scope and out-of-scope vulnerability cate-
gories across programs

standardized terms for vulnerability types, requests and headers,
leading to different descriptions of the same vulnerability type,
spelling errors and further inconsistency. Due to these challenges
of natural language, we use the Large LanguageModel (LLM) gpt-4o-
mini to extract this information in cases in which the providers do
not offer specific fields. The individual prompts used for extraction
can be found in our code artifacts.

We start by analysing the vulnerability types allowed to be tested
by security individuals within the scope. While Intigriti and YesWe-
Hack present those in a structured list, Bugcrowd and HackerOne
offer only a free-text field for their programs. During initial man-
ual validation, we observed that the automatic categorization of
terms into vulnerability types did not work perfectly reliably. To
improve the accuracy, we added a manual keyword-based classi-
fication to increase the validity of the resulting classification. By
using this mapping, we additionally categorized around 250 (out
of 2530) in-scope and around 2300 (out of 7941) out-of-scope vul-
nerability types, which were earlier in the fallback category Misc.
To this end, we create a list of vulnerability categories mentioned
for each program with rules specified (840 out of 843) and addi-
tionally summarize the most common terms. Table 2 shows the
most prominent vulnerability categories across the programs. We
can, for example, see that out of the 843 programs, 386 explicitly
accept vulnerabilities related to Access Control. While this provides
a general overview of commonly targeted and excluded areas, it
does not capture finer distinctions within each category. For in-
stance, Information Disclosure may include severe issues like bulk
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personal data leaks, but exclude minor exposures such as software
version details. These nuances cannot be reflected using the current
high-level classification.

Next, we extracted the required header extensions that must
be set during testing. This extraction leads to better results since
header descriptions often follow the same structures and often only
affect the User-Agent. In total, the LLM extracted 150 out of the 843
programs. We manually validated their correctness. In addition, for
74 programs, on the providers Intigriti and YesWeHack, these head-
ers can be extracted directly via a specific field. To ensure a broader
coverage we not only correlate the header extension to each scope
of the program, but also to the domain-name. While these entries
might lead to falsely set headers, we ensure that specific headers
are always set, even for AJAX, XHR, or similar requests against
other subdomains or domains, which might not be specified in the
original scope. To ensure compliance with the header prerequisite,
we accept the risk that the headers are sent to destinations that are
not part of VDP. Via this methodology, we can cover one third of the
domains of our dataset with an associated header. This aligns with
our observation that around 40% of the programs from providers
that explicitly allow extraction of these headers via the API demand
the use of such a header.

As a final commonly stated precaution in program rules — ex-
plicitly supported by a dedicated field in Intigriti — we extracted
and analyzed request rate limits. These are crucial to adhere to, as
VDPs often prohibit automated scanning or tools generating large
network traffic. Once again, we used ChatGPT to automatically ex-
tract rate limit information from rules and program descriptions.
In total, we obtained rate limit data for around 22% (188) of all
programs. While this number seems low, our manual investigation
confirmed this finding and matches the proportion of rate limits
among Intigriti programs for which we could extract this informa-
tion without an LLM. We further manually sampled 25 programs
from other providers and validated that the LLM assistant always
extracted the right number. Given this information, we can now
obtain insights into the expected limits of these 22% of all programs.
The data (in more detail in Appendix A) suggests that a limit of 5
requests per second complies with 60% of; reducing it to 2 requests
per second covers 80%. This distribution is likely biased towards
lower limits, as programs with stricter limits are more inclined to
state them to avoid disruptive testing.

Key Takeaways: Restrictive rules are common in VDPs.
Many programs require specific identifying headers and rec-
ommend a request limit – 2 per second for broad compliance.
While server-side testing is generally allowed, inconsistent
rule formats hinder deeper analysis, highlighting the need
for standardization.

4 MEASURING SECURITY RELEVANT
DIFFERENCES

After describing our list of VDPs, we now dive into the methodology
of the security measurements. First, we carefully considered the
previously discussed findings to ensure we adhere to the rules and
act responsibly (more details in Section 6.3). We then created our

dataset and initiated the measurement pipeline of VDPCollect as
displayed in Figure 2.

4.1 Creating the Dataset
For our experiments, we base the measurements on two datasets,
one for VDPs and one for popular websites. For the latter one, we
rely on the well-known CrUX list of February 2025 [77]. From this
list, we take the top 10k plus 500 randomly sampled domains from
each of the less popular buckets, i.e., 50k, 100k, 200k, 500k.

For the VDP dataset, we use websites extracted by our VDP-
Collect crawlers (see Section 3). Since these entries also contain
wildcard domains (e.g., *.example.com), we start a subdomain dis-
covery using the tool Sublis3r, which queries public sources such
as DNS servers and Google. Newly discovered subdomains are im-
mediately checked against the list of out-of-scope sites to ensure
that only in-scope domains are used to enlarge our VDP dataset.

Afterwards, we have two lists of websites, one from VDPs and
one from CrUX. We filter them both with the same method to
decrease the number of invalid targets passed to the later measure-
ments. We start with a DNS-based filtering. For each website in the
lists, we try to resolve the domain via dig to an actual IP; otherwise,
the target is not reachable and filtered out. From these filtered lists,
we further exclude domains that only serve non-HTML content and
domains that redirect to prevent redirecting outside of our scope.
This filtering is implemented using Playwright to control a headless
browser visiting each website.

Once these filtering steps are applied, we compiled lists of valid
targets for the VDP and CrUX datasets. Since metrics like HTTP
headers, cookies and vulnerabilities can vary across different sub-
pages of the same websites, we extend our dataset by discovering
additional subpages. To this end, we visit each website, extract links
to subpages and follow them. On valid responses, we add up to ten
valid subpages per original website. We limit the crawling depth
to two and consider at most 50 subpages per site. The resulting
datasets are now enriched with subpages, forming the basis for our
subsequent measurements.

4.2 HTTP Headers
This collection is implemented by issuing a single HTTP request.. If
we get a valid response — defined as a 2xx status code, no redirects
and a response time under 30 seconds — we store all the observable
headers as JSON in our database. In case of failure or an exception,
we log the issue to allow later evaluation of the success rate and
commonly observed problems during the collection.

In addition to inspecting HTTP headers, we parse the HTML
content when a CSP header is missing, checking whether it is
defined via a meta tag. Then, we automatically evaluate each CSP
using Google’s CSP-Evaluator and store the result in the database.

The database now contains all headers explained in Section 2.
We now focus on the classification of the observable configurations
as secure or insecure for use in our analysis.

4.2.1 Cross Origin Policies. We begin with Cross Origin Policies,
namelyCOEP,COOP andCORP. We classify them as insecure if their
directives are not restrictive, effectively deactivating the protection
offered by the headers. These insecure directives are unsafe-none
for COEP and COOP and cross-origin for CORP.



ASIA CCS ’26, June 1–5, 2026, Bangalore, India Philip Decker and Florian Hantke

HackerOne YesWeHack BugCrowd Intigriti CrUX Repo SSL/TLSCookiesHTTP 
Headers

JS Inclusions XSS

Crawling Framework Preprocessing Results Measurement Pipeline

Figure 2: The pipeline of VDPCollect used for our measurements

4.2.2 Content Security Policy (CSP). After providing insights into
the classification of headers related to cross-origin isolation, we
now focus on the CSP, which offers a broader framework for client-
side security controls. For our analysis of CSP, we mainly rely on
the results of the tool Google’s CSP-Evaluator, which we directly
execute if we observe a CSP via header or meta tag. The results are
individual ratings of the findings and recommendations to improve
the different directives within the CSP.
Besides the investigation based on Google’s CSP-Evaluator, we im-
plemented our own checks for twomore interesting use cases ofCSP
directives. Specifically, the first check examines the use of block-all-
mixed-content and upgrade-insecure-requests, both of which aim to
mitigate mixed-content issues and prevent insecure HTTP requests.
The second interesting directive is the frame-ancestors controlling
which websites are allowed to frame the original webpage. Used
values, which we can classify as insecure, are too broadly defined
wildcards. In our case, these include *, http:, http://, http://*, https:,
https:// and https://*. All of those offer no valid restriction to the
framing and are therefore considered insecure by us. The only
values we consider secure are: self, the own origin, the own domain,
or the same full URL, allowing for same-origin framing and no third
parties.

4.2.3 X-Frame Options (XFO). Complementary to CSP-based fram-
ing control, the legacyX-Frame-Options header is still in use. Though
less flexible, it serves the same purpose of preventing clickjacking.
The supported directives sameorigin and deny are classified as se-
cure in our experiments, as they allow framing only by the same
origin or block it entirely.

4.2.4 Permission Policy (PP). BeyondCSP, another importantmech-
anism that governs client-side capabilities is the Permission Policy,
which we investigate regarding its restrictiveness and common
usage. The header contains definitions of browser functionalities,
which can be completely disabled, such that no JavaScript can ac-
cess it, limit access to scripts of specific origins, or allow access to
any JavaScript. Our analysis investigates the most frequently set
permissions within the header and whether and how restrictive
they are.

4.2.5 Referrer Policy (RP). Privacy-related headers like the Referrer
Policy are important in controlling what information is shared
during navigation. The RP can be set to predefined values that
limit what the referrer header includes. For our research, we are
primarily interested in the insecure usage of the header. As insecure,
we consider the absence of the header, the browser’s default setting
no-referrer-when-downgrade and unsafe-url. The first would always
send the full URL in referrer, but only via HTTPS, while unsafe-
url sends the full URL in any case. These settings can expose the

full source URL to attackers, advertisers, or trackers, revealing the
origin of previously visited pages.

4.2.6 Strict Transport Security (HSTS). Transport-level security is
another common client-side security feature. The HSTS header tells
the browser to access a site only via HTTPS. To work properly, a
max-age must be set to define how long the browser should enforce
this rule. We focus on two values: 0, which is insecure, as it disables
HSTS immediately and 31 536 000, which is one year in seconds and
classified as acceptable, as it is also the minimum required to use
preload. The two other directives preload and includeSubdomains
are treated as neither secure nor insecure, as they configure scope
rather than directly affecting security.

4.3 Cookies
While we collect the HTTP headers with simple requests, we use
an instrumented headless Firefox with Playwright to load dynamic
resources for further collection. For each target URL, we create a
fresh user profile with the ISDCAC extension preinstalled to bypass
cookie banners [58]. These kinds of extensions are commonly used
in measurement work [19, 37, 40] and help ensure that we can
collect a sufficiently large set of cookies and resources for analysis.
Further, we specify our proxy to set the program-specific headers.
The script then navigates to the target, allowing up to 30 seconds
for the DOM to load. If successful, cookies are extracted via Play-
wright’s built-in cookies()method and stored in our databases, along
with exceptions and errors that occurred. We also map the cook-
ies to their identified purpose for further analysis, leveraging the
Open-Cookie-Database[34].

4.4 JavaScript Inclusions
Within the process of collecting cookies, we extract externally
loaded script sources monitoring the network within Playwright.
We flag requests as third-party scripts if the Content-Type includes
javascript or the requested URL ends with .js and the origin differs
from the visited site.

For further analysis, we classify third-party requests using the
public filter lists Disconnect.me and Easylists. Disconnect.me maps
domains to categories like advertisements, analytics and fingerprint-
ing. Easylists includes two lists Easylist (for ads) and EasyPrivacy
(for fingerprinting and tracking), which we match using the ad-
blockparser library.

Furthermore, we analyze the JavaScript libraries used on each
webpage for known vulnerabilities using the tool reitre.js [63].
While it cannot detect all issues, it checks for over 275 CVEs by
identifying library versions through hashes and other mechanisms.
Due to the version-based vulnerability detection, these only act as
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indicator and a exploitation might not be feasible due to prerequi-
site (e.g. use of specific functions). Still, it acts as indicator for the
overall security hygiene and potential vulnerabilities.

4.5 Transport Layer Security
Our measurements are not solely based on the code of webpages
and headers; we also measure the applied transport layer security.
The measurement and configuration extraction is done, within our
python3 pipeline VDPCollect, by using the tool sslscan [62]. The
tool performs a broad set of protocol-level and certificate configu-
ration tests. It offers information about TLS/SSL protocol versions,
the corresponding encryption schemes, checks for known vulnera-
bilities such as heartbleed and identifies expired, not-yet-valid and
self-signed certificates all compiled in a built-in rating system. Since
we investigate certificates and settings shared across webpages of
the same website, we only collect these metrics for each website
once. The tool is executed with its default configuration, its XML
outputs are converted to JSON and stored in our database.

4.6 Client-Side XSS
Besides configuration measurements acting as indicators of the
implemented security — such as security headers or transport layer
security — we also test for actual client-side vulnerabilities, specif-
ically XSS. We use Playwright again to control Foxhound, an in-
strumented Firefox browser designed to automatically detect and
validate XSS flows by tracing user-controllable input reaching sinks
which might enable HTML or JavaScript injection. David Klein
and Thomas Barber already used this instrumented browser for
their original research investigating custom JavaScript Sanitizer
Functions [39]. The browser found repeatedly use in earlier work
investigating XSS and showing its capabilities [38, 60, 68]. To cap-
ture findings, we developed a custom extension and backend to
extract taint flow data and store it in a dedicated database with
relevant context for validation. Our script then simply visits the
target webpages with a fresh browser profile, the proxy settings and
the ISDCAC extension to bypass cookie banners, waits for the page
load and waits an additional 10 seconds for the flow extraction.

Once the taint collection completed for all targets, we continue
with the exploit generation. The framework we chose was initially
created by Steffens et al. for their work analyzing XSS in the wild
in 2019 [68] and parts of the latter changes were done by Raut-
enstrauch et al. for their investigations about login landscapes,
published in 2024 [60]. The framework uses collected data flows to
generate context-aware exploits, including context-specific encod-
ing or escaping. We used alert(document.domain) as a proof-of-
concept payload and stored the results for automated validation.

After generating exploits for each viable taint flow, we start val-
idating the provided exploits. To do so, we use Firefox in a setup
similar to the one for the collection. For exploits requiring the re-
placement of values within the local storage, cookies, or similar, we
automatically set those before navigating to the URL. The script
then navigates to the URL and checks whether the alert function-
ality is triggered and if the message matches the current value of
document.domain, as specified in our exploit generation. If both
conditions are met, the exploit is successfully validated and stored
within a separate file for manual review, where we assess real-world

VDP CrUX

Scopes Entries 11 975 12 000
Extracted (in-scope) URLs 9919 12 000
Wildcards 104 -
Discovered Subdomains 32 615 -
Discovered Out-Of-Scope Subdomains 4821 -
Valid DNS Entry 15 576 11 960
Valid Response 3462 9423
Subpage Discovery 11 734 81 702

Table 3: Overview preprocessing steps

exploitability and document the findings. As detailed in Section 6.3,
confirmed vulnerabilities are then responsibly disclosed to the af-
fected site operators.

5 RESULTS
With the insights of the VDP coverage and rules in Section 3, we
now present the results of the subsequent crawl, our security mea-
surements, and statistical chi-square tests.

5.1 General Crawling Statistics
Before starting the measurements, we applied our subdomain dis-
covery and filtering to preprocess the collected targets. As presented
in Table 3, we started initially with 11 975 entries out of the VDPs
and 12 000 entries of the CrUX list. Through our subdomain discov-
ery, we could signify increase the dataset, however the majority
of those were removed immediately by the subsequent filtering.
After DNS and HTTP filtering, 3462 VDP and 9423 CrUX entries
remained. The higher removal rate for VDPs was expected, as they
might not be updated as regularly as CrUX, and the VDP exclusive
subdomain discovery often finds outdated or unreachable domains.
Afterwards, the last step to conclude our dataset creation is the
subpage discovery. Our subpage discovery traced the discovered
subpages back to 1544 base URLs (44.6%), with an average of 7.14
new pages per active site. For CrUX, 84% of sites yielded new pages,
totaling in an average of 9.13 per site. The lower number with the
VDP dataset is partly due to more empty pages and a higher rate of
duplicate links within the websites of the VDP dataset (27.41% vs.
19.36% in CruX). In total, the final datasets included a total of 11 734
webpages of VDPs and 81 702 webpages for the CrUX dataset.

5.2 HTTP Headers
Throughout our header crawling, we observed a similar failure rate
for both datasets, namely 8.31% (6755) for targets of CrUX and 7.42%
(1060) for the ones of VDPs. Despite our effort in preprocessing,
the most common failures were due to redirects and the HTTP
response code 403 Unauthorized. We prevented redirects due to
the risk of leaving the explicitly defined scope and the associated
risk of potential legal and ethical issues when testing websites
without prior permission. Throughout all the measurements, these
repeatedly occur and are blocked by our framework.

Starting with the overall occurrence of headers presented in Ta-
ble 4 we identified similar adoption rates throughout most of the
headers, with only few headers showing larger differences.
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VDP - Domains CrUX - Domains

COEP 0.24% 0.52%
CORP 0.96% 1.22%
COOP 2.70% 2.42%
CSP 23.31% 22.66%
PP 6.26% 5.22%
RP 20.22% 16.61%
HSTS 37.27% 39.93%
XFO 34.12% 39.54%

Table 4: Header usage overall

7.0% 6.0% 5.0% 4.0% 3.0% 2.0% 1.0% 0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0%

COEP

COOP

CORP

RP

XFO

0.09%(0.24%) 0.34% (0.52%)

0.09%(0.96%) 0.31% (1.22%)

0.42%(2.70%) 0.55% (2.42%)

3.30%(20.22%) 5.02% (16.61%)

2.49%(34.12%) 2.93% (39.54%)

VDP
CrUX

xx% = Insecure Header Usage
(xx%) = Overall Header Usage

Figure 3: Prevalence of insecure headers

Next, we apply our earlier classifications for five of the head-
ers (see Section 4.2), defining secure and insecure configurations,
which results in the percentages presented in Figure 3. A signifi-
cant difference (chi-square; p ≈ 0.00005 < 0.05) was only identified
in the insecure usage of the referrer-policy, for which within the
VDP dataset 3.30% of 20.22% domains were flagged insecure, com-
pared to 5.02% of 16.61% of the CrUX dataset. However, the CrUX
dataset contains more adult-content, dating, and similar websites,
which should not share the referrer insecurely to ensure privacy.
In contrast, XFO (𝑝 ≈ 0.20) and CORP (𝑝 ≈ 0.46) show no statisti-
cally significant disparity in their insecure usage. For COOP and
COEP, we do not report statistical tests, as their very low counts
(<5 in the VDP dataset) violate the assumptions required for reliable
chi-square testing [15].

For the HSTS, which instructs the browser to automatically up-
grade HTTP connections to HTTPS, we examined the configuration.
While the VDP domains use it slightly more often (see Table 4),
the observed configurations revealed only minor differences. For
example, the max-age of at least one year was set by 28.19% (of
37.27%) of VDP and 26.88% (of 39.93%) of CrUX domains, showing
no significant difference. Insecure values (e.g., zero or malformed)
were rare overall, but occurred twice as often in CrUX domains
(0.45% VDP vs. 0.99% CrUX), leading in a statistically significant
difference (chi-square; 𝑝 ≈ 0.0048) and allowing insecure HTTP
connections. Regarding the includeSubDomains, both datasets set
it in one quarter of the investigated domains, with no significant
difference between configurations.

While the insecure usage of the earlier headers primarily leads
to cross-origin or privacy issues, CSP is more critical because it
mitigates multiple attacks. Our evaluation with the Google’s CSP-
Evaluator provides insights into its recommendations (see Appen-
dix C), reporting their assigned severity and the share of domains
where at least one subpage received the recommendation for both

datasets. Around 5% more domains within the CrUX dataset com-
pletely omit the important directives script-src and object-src com-
pared to the VDP domains. In contrast, however, within the VDP
domains a higher percentage of 2-4% include unsafe-eval or unsafe-
inline. Both values heavily reduce the security guarantees by in-
creasing the attack surface for XSS attacks.

Besides the automated analysis using Google’s CSP Evaluator,
we also examine two additional directives in more detail. These are
the upgrade-insecure-requests and the (deprecated but still widely
supported) block-all-mixed-content. Both directives target mixed
content attacks by ensuring that all resources loaded by the page use
HTTPS connections. In most domains — 85% in the VDP dataset and
75% in CrUX — where a CSP header was present, neither directive
was used in any of the subordinate webpages. In cases where they
were used, both datasets relied mainly on upgrade-insecure-requests,
which is the more modern directive.

The last directive we investigated is frame-ancestors. The per-
centage of domains that did not use the directive on any subpages
is nearly identical in both datasets: 11.02% for VDP and 10.82% for
CrUX. However, domains within the VDP dataset, including at least
one insecure value within their webpages, add up to 0.42% of the
total, compared to only 0.20% in the CrUX dataset. Interestingly,
when considering the opposite, namely the number of domains that
consistently use their own origin or self across all their subpages,
the situation is reversed. The domains in the VDP dataset do so
in 0.36%, while only 0.17% of the CrUX domains. In summary, our
analysis results hint at CrUX showing more consistency and fewer
mixed or insecure framing configurations overall. The VDP dataset,
on the other hand, demonstrates a greater polarity: domains either
use the directive securely with self or are misconfigured and unsafe.

Another restricting header for which our analysis led to interest-
ing insights is the PermissionPolicy. The most frequently observed
configurations were restrictive and in favor of web security, ex-
plicitly blocking access to sensitive features. The most restricted
features weremicrophone(), camera(), and geolocation(), observed in
between 1.16% and 4.34% of the domains, with VDP domains con-
sistently applying each of those over twice as often as CrUX. These
suggest a stronger awareness of implementing a least-privilege
permission strategy among VDP websites. Overall, broad and non-
restrictive permissions are used very infrequently and even less for
more sensitive capabilities such as camera, microphone, or geolo-
cation, highlighting a general awareness of permission hardening
across both datasets.

5.3 Cookies
Another key measure to limit the impact of XSS attacks is secur-
ing cookies by setting the appropriate flags. Figure 4 shows the
applied cookie flags across the pages in our datasets, broken down
by dataset and whether the cookies are first-party or third-party.

Both, first- and third-party, show stronger security within the
VDP dataset for the secure and httpOnly attributes, with both differ-
ences statistically significant (chi-square; 𝑝 ≪ 0.05). This suggests
a more secure cookie handling due to higher awareness of the usage
of secure default configurations within frameworks. Additionally,
VDP cookies used the SameSite=Strict attribute significantly more
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Cookie Secure HttpOnly SameSite

C PHPSESSID 34.1% 37.5% 84.9% None, 14.6% Lax, 0.4% Strict
JSESSIONID 57.0% 81.0% 93.6% None, 4.1% Lax, 2.3% Strict
cf_clearance 96.9% 100% 100% None
__cf_bm 95.6% 100% 100% None
_cfuvid 91.6% 99.3% 100% None

V PHPSESSID 64.8% 62.8% 76.4% None, 14.0% Lax, 9.6% Strict
JSESSIONID 90.1% 85.6% 89.3% None, 6.0% Lax, 4.7% Strict
cf_clearance 98.1% 100% 100% None
__cf_bm 92.8% 100% 100% None
_cfuvid 93.3% 98.8% 100% None

Table 5: Sensitive cookies flag usage in the CrUX (C) and VDP
(V) datasets

often (chi-square; 𝑝 ≪ 0.05). Also, as expected, because cross-
origin use requires it, most third-party cookies in both sets use
SameSite=None, showing no significant difference.

A similar trend is also identified within a sample of security-
sensitive session and authentication cookies as presented in Table 5.
While third-party cookies such as __cf_bm showed consistently
strong flag usage in both datasets, traditional first-party cookies
(e.g., PHPSESSID, JSESSIONID) revealed notable differences. VDP
websites use necessary flags like Secure, HttpOnly, and SameSite
more often, highlighting a stricter focus on cookie security.

In addition to the cookie options, we used theOpenCookieDatabase
to classify the top 25 most frequently used cookies by their purpose
to identify shifts there. Half of the cookies are classified as analytics
(13) and marketing (6), while for the VDP dataset, only three were
classified as analytics and eight as marketing. Conversely, some
cookies like __cf_bm or _cfuvid (Cloudflare cookies) appear more
often in the VDP dataset, hinting at increased bot protection and
request fingerprinting among sites with a VDP, while still overall
focusing more on functionality and using less analytics. In contrast,
the higher share of analytics-related cookies in CrUX domains in-
dicates a stronger focus on user tracking and behavioral analysis,
which is often leveraged for advertising optimization.

5.4 JavaScript Inclusions
While accessing insecurely configured cookies is advantageous
in client-side attacks, the prone code snippets and thus potential
vulnerabilities are often enabled by included third-party scripts [42,
56, 57]. Our collection of included scripts within webpages of both
datasets yielded a great success rate of 98.74% for VDP and 94.53%
for CrUX. By analyzing the number of third-party inclusions, we
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Figure 5: Comparison of JavaScript library vulnerabilities
across datasets

discovered the VDP dataset includes 11.96 unique domains with a
median of six. In contrast, the included domains’ numbers are higher
for the CrUX dataset, as they include JavaScript from 17.27 unique
domains with a median of 11. This indicates a higher dependency
on third-party code, which must be carefully maintained to prevent
third-party vulnerabilities in their own webpages.

To evaluate the third-party hygiene, we used retire.js to check
for known vulnerabilities and their severities at the webpage and
domain level, as shown in the Figure 5a and the Figure 5b. The sepa-
ration reveals that the vulnerabilities are not concentrated in a few
domains with many insecure pages, but rather distributed across
many domains, each with fewer issues, as reflected by the higher
percentage of affected domains compared to webpages. Overall
retire.js identified a statistically significant difference (chi-square;
𝑝 < 0.001) in the prevalence of potentially vulnerable pages, with
vulnerable versions detected on 8.09% (1108) of VDP pages com-
pared to 15.91% (12 369) of CrUX pages. Since the discovery relies
on library versions, vulnerabilities might not be exploitable due to
mitigations or unused code. Still, the measurement provides a great
comparison of the update discipline and awareness of third-party
vulnerabilities, with VDP sites performing significantly better.

Furthermore, we analyzed CVE-tagged vulnerabilities reported
by the tool to estimate their age, based on their CVE ID, and present
our results in Figure 6. Observing the plot reveals that websites
within VDPs show vulnerabilities mainly between zero and five
years, while CrUX websites have even older vulnerabilities. This
observation is further validated by the calculated higher average
(+0.6) and median (+1) age in years. This analysis further indicates
a slightly worse security hygiene and patch management regard-
ing third-party libraries and their vulnerabilities within the CrUX
dataset. The complete breakdown of the most frequently identified
vulnerable libraries and versions is enclosed in the Appendix B. It
reveals further insights into the different libraries responsible for
the vulnerabilities included in the webpages of both datasets.

Besides assessing known vulnerabilities of third-party JavaScript
inclusions, wemanually and automatically classified the top 25most
frequently included domains (details in Appendix B). Our manual
investigation reveals that CrUX websites more often included do-
mains linked to advertising and tracking (e.g., googlesyndication,
criteo, and amazon-adsystem), while VDP webpages favored more
functionality-focused inclusions like cookielaw and adobedtm. These
observations were further supported by the automated classifica-
tions. According to Disconnect.me, 8 of the top 25 CrUX domains
related to advertising, 4 to analytics, and 4 to fingerprinting; VDP
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had only 2 in advertising, 6 in analytics, and 3 in fingerprinting.
EasyList and EasyPrivacy classifications also confirmed this: only 1
of the top VDP URLs was flagged for advertisement (vs. 15 in CrUX),
and 11 VDP URLs were marked as trackers (vs. 6 in CrUX).

To summarize the classifications, they revealed that CrUX sites
tend to include more third-party scripts for advertising and mone-
tization, reflecting their commercial focus. In contrast, VDP sites
show fewer third-party inclusions overall, with a stronger emphasis
on functional and analytic purposes, but also higher numbers in
tracking. This suggests a more cautious and less monetary focus.

5.5 Client-Side XSS
For the XSS analysis, we collected over 6.3 million unique taints by
visiting each webpage of both datasets once. The results of each
collection step regarding client-side XSS are presented in Table 6.
In the next step, after the automated exploit generation, at least
one exploit was generated for 441 unique webpages (3.08%) in the
VDP dataset and 3548 webpages (4.37%) in the CrUX dataset. When
breaking these down to the domain level, an even higher differ-
ence (5.18% VDP vs. 7.16% CrUX) is observed, which is statistically
significant under a chi-square test (𝑝 < 0.001). The higher percent-
age of generated exploits within the CrUX set suggests a greater
prevalence of unprotected flows from user-controllable sources to
potentially dangerous sinks.

Nevertheless, while the presence of such flows is already con-
cerning, these might not be exploitable due to sanitization or similar
countermeasures applied. The real security risk is confirmed by
successfully validated exploits. In total, we validated exploits for 41
domains (0.49%) within CrUX, and only for three domains (0.16%)
of the VDP dataset. Similar to some security headers, the sample
set is too small to reliably perform a chi-square test [15]. Although
these percentages are low, they are still critical, as such fundamental
client-side XSS vulnerabilities should no longer be present under
modern security best practices. And looking back at the earlier num-
ber of websites for which exploits were generated, this difference
proved to be significant. Furthermore, the CrUX dataset contained
nearly three times as many vulnerable domains and, when vulner-
able, often included multiple affected pages. Our manual review
revealed this was typically caused by single flows or closely related
ones, exploitable across multiple subpages, rather than multiple
distinct vulnerabilities.

VDP CRUX

Collected Taints 1 063 503 5 595 563
Websites with Generated Exploit (%) 441 (3.08) 3548 (4.37)
Domains with Generated Exploit (%) 97 (5.18) 605 (7.16)
Websites with Validated Exploit (%) 11 (0.08) 252 (0.31)
Domains with Validated Exploit (%) 3 (0.16) 41 (0.49)

Table 6: Overview of XSS detection steps
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Figure 7: Strength rating of certificate encryption

5.6 Transport-Layer Security
For the transport-layer security metrics, especially employed via
certificate settings, we relied on the tool sslscan. Our measurement
achieved a success rate of almost 90% for CrUX targets in compari-
son to 84% for targets belonging to the VDPs.

Within both datasets, we identified six expired certificates and
none that were not yet valid. Interestingly, the non-valid certifi-
cates of the CrUX dataset included four certificates that presented
localhost.localdomain as the certificate subject. This value is often
the default or testing value and, therefore, is not trusted by the
browsers. It indicates a configuration error on the operator’s site.
As for our evaluation, we categorized those as insecure as well. Both
datasets present a low percentage of self-signed certificates, with
only two within the VDP and four within the CrUX dataset. These
comparisons present equal results for both datasets, indicating a
similar certificate of hygiene.

By investigating the used configurations of the certificate it-
self, such as the used encryption and offered encryption schemes,
the VDP dataset performed slightly better. The observed encryp-
tion schemes used for the certificates themselves are presented
in Figure 7a and Figure 7b. The most prominent combinations are
RSA-2048 and EC-128 within both datasets, but for certificates from
the VDP dataset, the first is most often used with around 60%. Mean-
while, for the CrUX dataset, the latter is more often used, namely
for slightly more than 50%. Even if the Elliptic Curve calculation is
more complex than RSA, the key size of 128 bits is considered low
for current standards, and thus we consider it weaker than RSA
with the key size of 2048 bits [3]. More CrUX certificates rely on
this lower security standard, indicating a more outdated encryption
implementation, which is also statistically significant according to
our chi-square test (𝑝 < 0.0001).

Even more interesting are the schemes offered by the certificate
for the client to chose from to establish the encrypted communica-
tion channel. The tool sslscan assigns a strength for each TLS/SSL
version and cipher combination, which lead to the overview pre-
sented in Figure 8a and Figure 8b. Notably, both datasets almost
exclusively present combinations classified as acceptable or strong.
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Figure 8: Strength ratings by sslscan for offered schemes

These results indicate a general awareness of cryptographic threats
towards the transport layer. Nevertheless, the VDP dataset even
performs slightly better, including a medium rated combination in
only 1.26%, while the CrUX dataset does so in almost twice as much
(2.31%). In addition, the inclusion of a combination with the rating
strong is lower within the CrUX dataset at only 35.28%, while the
VDP dataset reaches a percentage of 46.03%. A chi-square test con-
firms the statistical significance of this difference (𝑝 = 0.0008), sup-
porting the observation that VDPs more frequently deploy stronger
encryption schemes.

Key Takeaways: Throughout our results, the VDP dataset
demonstrates a higher security level compared to CrUX. VDP
webpages employed most configurations more securely, and
significantly fewer (potential) exploitable vulnerabilities were
discovered.

6 DISCUSSION
In the following discussion, we first highlight the main insights
gained from our security comparison, followed by the limitations
of this work to place these insights in the proper context. We then
outline our ethical considerations. Finally, with all insights in mind,
we discuss how further work can build on the takeaways of this
study and how VDP providers could better support their efforts.

6.1 Main Insights
Can VDPs serve as a viable alternative dataset for web security
research? The short answer is, yes, provided that existing natural
biases are acknowledged.

Our analysis shows that a substantial fraction of programs ex-
plicitly permit testing for server-side vulnerability classes such as
access control flaws, SQL injection, and SSRF. This authorization
removes the primary ethical and legal obstacle that has historically
prevented large-scale server-side measurement studies on theWeb.

Regarding potential biases, our results indicate that the VDP
dataset is skewed toward websites with a stronger security pos-
ture. In particular, we identified fewer exploitable client-side XSS
issues on sites in our VDP dataset (0.16%) compared to 0.49% on
CrUX. This bias is also reflected in the adoption of security poli-
cies. Websites listed in VDPs use the CSP header more frequently.
They also deploy a stronger Permission-Policy twice as often, ex-
plicitly blocking access to features like the microphone or camera
more often, following the least-privileged principle. Additionally,
Referrer-Policy is deployed more often on VDPs (20.22%) compared

to sites listed in CrUX (16.61%), even with more restrictive config-
urations. Other indicators support this trend, such as the higher
use of cookie options like httpOnly (43.3% vs. 27.5%), the use of
stronger TLS signing algorithms and fewer identified vulnerable or
outdated third-party libraries (8.09% vs. 15.91%) on VDP sites.

That said, some metrics show little difference. For example, the
general deployment of HTTP security headers, although slightly
higher in our VDP dataset, is similar across both datasets. No-
tably, for CSP, VDPs more often include the insecure CSP directives
unsafe-inline and unsafe-eval, reflecting the well-known challenges
in crafting robust CSPs [11, 64].

In general, our findings suggest a clear focus on (potentially)
exploitable vulnerabilities on VDP-listed websites rather than vul-
nerability mitigation policies such as HTTP header configurations.
This focus aligns with the goal of such external security programs,
namely, identifying and remedying security issues. Consequently,
issues like XSS and insecure third-party code rank among the most
frequently reported in VDPs [7, 27]. Our findings suggest that VDP-
listed sites have fewer vulnerabilities and thus should be seen as
a lower-bound relative to the general Web. Moreover, given the
focus on impactful issues, we assume that companies selectively
include high-impact systems in their VDPs, thus shifting the bias of
a VDP dataset towards critical or attack-prone assets. Nevertheless,
unlike CrUX, which reflects popularity and adoption, a VDP dataset
emphasizes real-world exploitability. In our view, this makes it a
valuable resource for studying actual vulnerability exposure and
exploring areas otherwise inaccessible.

6.2 Limitations
As mentioned above, our findings highlight exclusively client-side
measurable security aspects (for ethical reasons as explained in Sec-
tion 6.3). As such, our comparison may not fully reflect other as-
pects, including the server-side. Still, the VDP dataset outperforms
the CrUX datasets with actual vulnerabilities (like XSS) commonly
reported to VDPs. Since the top ten reported vulnerabilities in VDPs
also include server-side issues — such as Insecure Direct Object
References (IDOR) or session misconfigurations — it is plausible,
though unconfirmed, that a similar disparity exists in server-side
security between the datasets [7, 27].

Another limitation concerns the statistical test we used, chi-
square. In some cases, sample sizes were too small to yield reliable
results. We therefore excluded them from the test in these cases.

We also limit our analysis to the static surface of webpages
without interactions, logins, or forced execution. While deeper in-
teractions could reveal more, prior work found minimal differences
between logged-in and anonymous views [60].

Lastly, the VDP dataset creation process itself has limitations.
First, the dataset represents only a lower bound of programs, as it is
solely collected from public VDPs visible to new accounts. Moreover,
some program details are available only in natural language, such
as allowed vulnerability types, requiring a combined RegEx- and
LLM-based extraction. While LLM-based approaches are not fully
reproducible, we minimized the model’s temperature to make it
as deterministic as possible. To ensure research transparency, we
made all scripts and data publicly available [17].
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6.3 Ethics
Our experiments were performed on live systems, which always
necessitate ethical considerations. Following the Menlo Report [2],
we balanced potential risks against societal and research benefits
and performed a stakeholder analysis. Below, we outline the key
stakeholders, along with risks they face and benefits they may gain.

Our first stakeholder group is program owner, i.e., organizations
offering disclosure programs. Our scans could have affected their
websites with additional traffic and false positive security alerts,
leading to increased resource usage. However, these organizations
explicitly consented to security testing by hosting such programs,
thereby accepting this risk. To further minimize it, we compiled
common rules from these programs and followed them when crawl-
ing (see Section 4). This includes limiting requests to 3 per second
and adding HTTP headers with contact information. We responsi-
bly disclosed all vulnerabilities according to program rules, enabling
program owners to address potential issues. Furthermore, this pa-
per contributes to a broader understanding of the effectiveness of
disclosure programs, supporting owners in informed decisions.

Another core stakeholder is the group of website owners without
disclosure programs (websites from the CrUX list). Although they
did not consent to scanning, they face similar risks as owners of
sites with disclosure programs. At the same time, they benefit from
our responsible disclosure of vulnerabilities, which we reported to
each owner via the most suitable contact addresses found on their
sites. They also benefit indirectly from the study’s findings, which
may inform decisions about adopting disclosure programs. Finally,
the paper advocates for responsible scanning practices, helping to
reduce the risk of harmful large-scale scanning in future research.

Besides the owners of a website, its end users may also face
risks such as bad website performance when overwhelmed with
scans. However, as mentioned before, our scans do not exceed 3
requests per second. Our monitoring showed no negative effect
on the targeted websites, which are the top-visited websites on
the Web and sites with disclosure programs. In the long run, end
users benefit from more responsible research methodologies and
improved web security through disclosure programs.

Lastly, we as researchers are also a core stakeholder. We benefit
from publishing this work but face risks common in web mea-
surement, such as exposure to disturbing content or unpredictable
legal reactions of website owners. Drawing on prior experience, we
assessed these risks as low, discussed them within the team, and
ensured voluntary participation.

Overall, our methods align with practices successfully used in
prior web research. Based on our stakeholder analysis, we believe
the societal and academic benefits of improved understanding of
VDPs outweigh the limited and mitigated risks of our scans.

6.4 Recommendations For Future Research
Building on the insights of our security comparison and keeping
limitations in mind, we now discuss how VDPs can support future
measurement research.

Some measurement studies — such as those involving any server-
side code executions — are ethically and legally challenging without
consent from the website owners [2, 29]. However, these remain im-
portant to study as they can help to highlight server-side security

trends in the Web ecosystem and shift focus on urgent, under-
studied or new evolving issues. VDPs can provide a “safe harbor”
for such work as pre-established agreements. Furthermore, these
programs help address another common challenge in large-scale
studies, the reporting of findings to the individual vendors [70].
VDPs streamline this process by offering a direct communication
channel, which is also useful when unexpected issues arise or when
researchers seek further context for qualitative analysis.

For researchers who plan to conduct research in this direction, we
recommend using our open-sourced tool [17] to compile a dataset
of VDP-covered sites. When conducting scans, researchers should
respect the program rules (see Section 3.3) by applying appropri-
ate request rate limits (e.g., two requests per second) and setting
program-specific headers. Also, for invasivemethods, program rules
should be reviewed carefully. In addition, best practices from prior
work should also be followed, such as pre-studies in controlled
environments, active monitoring and data minimization [21, 29].

While these VDPs allow researchers to conduct large-scale re-
search that might otherwise be infeasible, downsides remain. Of
course, these programs represent only a small, security-aware part
of the Web. However, Web measurement research is always biased;
commonly used datasets like Alexa, CrUX, or Tranco are biased
towards popular Western-centric sites, which also make up just a
subset of the World Wide Web. As long as such biases are made
transparent, using VDP-based datasets to present lower bounds on
otherwise hidden security issues is justifiable.

6.5 Recommendations For VDP Providers
This work highlights that compiling a dataset of VDP-listed sites
is far from straightforward. Platforms lack a standardized way to
offer the often textual scopes and rules. They also miss a uniform re-
porting process. From our own experience, complex or low-impact
reports are sometimes dismissed by impact-driven providers, even
when the vendors would welcome them. We therefore call on VDP
providers to adopt standard interfaces for (academic) researchers
to access program details and report issues at scale.

7 CONCLUSION
We compiled a dataset of websites participating in vulnerability
disclosure programs (VDPs), along with their program rules. Using
this dataset, we conducted a measurement comparing client-side se-
curity aspects of VDP-listed sites against those from a CrUX dataset.
Our findings provide the first empirical evidence supporting the
widely held belief that VDPs contribute to improved web security.

Building on this work, we encourage researchers to consider
VDPs as a valuable dataset for security measurements that would
otherwise be difficult or infeasible. At the same time, we urge VDP
platform providers to support academic research by offering more
standardizedmechanisms for compiling datasets and enabling large-
scale notifications.
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A REQUEST LIMITS
We analyzed the the rules typicallymentioned in VDPs. One of these
rules is the rate limit that researchers should apply when sending
requests to a website. Figure 9 shows these limits as requests per
seconds, excluded are three outliers. One program allowed up to
500 and two up to 1000 requests per seconds.
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Figure 9: Allowed request rate per second
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B LIST OF MOST FREQUENT THIRD-PARTY JAVASCRIPT INCLUSIONS
Our measurement of JavaScript inclusions via retire.js revealed multiple libraries which are repeatedly found within webpages having known
vulnerabilities. Figure 10 presents the top 20 most frequently reported libraries across both datasets, along with their vulnerable version.
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Figure 10: Most Frequent Vulnerable Library and Versions

C CSP EVALUATOR
We compared the CSPs deployed by sites belonging to VDPs with ones from the CrUX dataset by using the Goggle’s CSP Validator. The
results are listed in Table 7 and show that in general, VDP-listed sites have a larger number of secure CSPs while, however, lacking behind
CrUX-listed sites in the high severity cases.

Description Affected Severity VDP Domains CrUX Domains
Directive (of 23.31%) (of 22.66%)

Missing object-src allows the injection of plugins which can execute JavaScript object-src 10 10.52% 15.09%
script-src directive is missing script-src 10 9.85% 14.69%
’self’ can be problematic if you host JSONP, AngularJS or user uploaded files script-src 50 8.91% 4.51%
’unsafe-eval’ allows the execution of code injected into DOM APIs such as eval() script-src 50 7.65% 5.59%
’unsafe-inline’ allows the execution of unsafe in-page scripts and event handlers script-src 10 8.26% 4.76%
data: URI in default-src allows the execution of unsafe scripts default-src 10 1.55% 2.20%
’unsafe-inline’ allows the execution of unsafe in-page scripts and event handlers default-src 10 1.32% 1.79%
’unsafe-eval’ allows the execution of code injected into DOM APIs such as eval() default-src 50 1.17% 1.71%
https: URI in script-src allows the execution of unsafe scripts script-src 10 1.55% 4.97%
’self’ can be problematic if you host JSONP, AngularJS or user uploaded files default-src 50 1.41% 1.14%

Table 7: Recommendations by CSP-Evaluator
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